Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Edith Cowan University

Wettability

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Effect Of Humic Acid On Co2-Wettability In Sandstone Formation, Mujahid Ali, Faisal Ur Rahman Awan, Muhammad Ali, Ahmed Al-Yaseri, Muhammad Arif, Mónica Sánchez-Román, Alireza Keshavarz, Stefan Iglauer Apr 2021

Effect Of Humic Acid On Co2-Wettability In Sandstone Formation, Mujahid Ali, Faisal Ur Rahman Awan, Muhammad Ali, Ahmed Al-Yaseri, Muhammad Arif, Mónica Sánchez-Román, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

© 2020 Elsevier Inc. Hypothesis: Millions of tons of CO2 are stored in CO2 geological storage (CGS) formations (depleted oil reservoirs and deep saline aquifers) every year. These CGS formations naturally contain small concentrations of water-soluble organic components in particular humic acid (HA), which may drastically affect the rock wettability - a significant factor determining storage capacities and containment security. Hence, it is essential to characterise the effect of humic acid concentration on CO2-wettability and its associated impact on storage capacity. Experimental: To achieve this, we measured advancing and receding contact angles at reservoir conditions using the pendant drop tilted …


Reversible And Irreversible Adsorption Of Bare And Hybrid Silica Nanoparticles Onto Carbonate Surface At Reservoir Condition, Zain-Ul-Abedin Arain, Sarmad Al-Anssari, Muhammad Ali, Shoaib Memon, Masood Ahmed Bhatti, Christopher Lagat, Mohammad Sarmadivaleh Jan 2020

Reversible And Irreversible Adsorption Of Bare And Hybrid Silica Nanoparticles Onto Carbonate Surface At Reservoir Condition, Zain-Ul-Abedin Arain, Sarmad Al-Anssari, Muhammad Ali, Shoaib Memon, Masood Ahmed Bhatti, Christopher Lagat, Mohammad Sarmadivaleh

Research outputs 2014 to 2021

© 2020 Southwest Petroleum University Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. …