Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe Jan 2021

Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe

Electrical & Computer Engineering Faculty Publications

There is considerable interest in the application of quantum information science to advance computations in plasma physics. A particular point of curiosity is whether it is possible to take advantage of quantum computers to speed up numerical simulations relative to conventional computers. Many of the topics in fusion plasma physics are classical in nature. In order to implement them on quantum computers, it will require couching a classical problem in the language of quantum mechanics. Electromagnetic waves are routinely used in fusion experiments to heat a plasma or to generate currents in the plasma. The propagation of electromagnetic waves is …


Full Field Computing For Elastic Pulse Dispersion In Inhomogeneous Bars, A. Berezovski, R. Kolman, M. Berezovski, D. Gabriel, V. Adamek Jul 2018

Full Field Computing For Elastic Pulse Dispersion In Inhomogeneous Bars, A. Berezovski, R. Kolman, M. Berezovski, D. Gabriel, V. Adamek

Publications

In the paper, the finite element method and the finite volume method are used in parallel for the simulation of a pulse propagation in periodically layered composites beyond the validity of homogenization methods. The direct numerical integration of a pulse propagation demonstrates dispersion effects and dynamic stress redistribution in physical space on example of a one-dimensional layered bar. Results of numerical simulations are compared with analytical solution constructed specifically for the considered problem. Analytical solution as well as numerical computations show the strong influence of the composition of constituents on the dispersion of a pulse in a heterogeneous bar and …


Dispersive Waves In Microstructured Solids, A. Berezovski, J. Engelbrecht, A. Salupere, K. Tamm, T. Peets, Mihhail Berezovski Jun 2013

Dispersive Waves In Microstructured Solids, A. Berezovski, J. Engelbrecht, A. Salupere, K. Tamm, T. Peets, Mihhail Berezovski

Publications

The wave motion in micromorphic microstructured solids is studied. The mathematical model is based on ideas of Mindlin and governing equations are derived by making use of the Euler–Lagrange formalism. The same result is obtained by means of the internal variables approach. Actually such a model describes internal fields in microstructured solids under external loading and the interaction of these fields results in various physical effects. The emphasis of the paper is on dispersion analysis and wave profiles generated by initial or boundary conditions in a one-dimensional case.


On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski Feb 2012

On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski

Publications

Abstract

The asymptotic stability of solutions of the Mindlin-type microstructure model for solids is analyzed in the paper. It is shown that short waves are asymptotically stable even in the case of a weakly non-convex free energy dependence on microdeformation.

Research highlights

The Mindlin-type microstructure model cannot describe properly short wave propagation in laminates. A modified Mindlin-type microstructure model with weakly non-convex free energy resolves this discrepancy. It is shown that the improved model with weakly non-convex free energy is asymptotically stable for short waves.


Nonlinear Progressive Wave Equation For Stratified Atmospheres, B. Edward Mcdonald, Andrew A. Piacsek Nov 2011

Nonlinear Progressive Wave Equation For Stratified Atmospheres, B. Edward Mcdonald, Andrew A. Piacsek

All Faculty Scholarship for the College of the Sciences

The nonlinear progressive wave equation (NPE) [McDonald and Kuperman, J. Acoust. Soc. Am. 81, 1406–1417 (1987)] is expressed in a form to accommodate changes in the ambient atmospheric density, pressure, and sound speed as the time-stepping computational window moves along a path possibly traversing significant altitude differences (in pressure scale heights). The modification is accomplished by the addition of a stratification term related to that derived in the 1970s for linear range-stepping calculations and later adopted into Khokhlov-Zabolotskaya-Kuznetsov-type nonlinear models. The modified NPE is shown to preserve acoustic energy in a ray tube and yields analytic similarity solutions for …


Two-Scale Microstructure Dynamics, Arkadi Berezovski, Mihhail Berezovski, Juri Engelbrecht Sep 2011

Two-Scale Microstructure Dynamics, Arkadi Berezovski, Mihhail Berezovski, Juri Engelbrecht

Publications

Wave propagation in materials with embedded two different microstructures is considered. Each microstructure is characterized by its own length scale. The dual internal variables approach is adopted yielding in a Mindlin-type model including both microstructures. Equations of motion for microstructures are coupled with the balance of linear momentum for the macromotion, but not coupled with each other. Corresponding dispersion curves are provided and scale separation is pointed out.


On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski Feb 2011

On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski

Publications

The asymptotic stability of solutions of the Mindlin-type microstructure model for solids is analyzed in the paper. It is shown that short waves are asymptotically stable even in the case of a weakly non-convex free energy dependence on microdeformation.


Elements Of Study On Dynamic Materials, Marine Rousseau, Gerard A. Maugin, Mihhail Berezovski Jul 2010

Elements Of Study On Dynamic Materials, Marine Rousseau, Gerard A. Maugin, Mihhail Berezovski

Publications

As a preliminary study to more complex situations of interest in small-scale technology, this paper envisages the elementary propagation properties of elastic waves in one-spatial dimension when some of the properties (mass density, elasticity) may vary suddenly in space or in time, the second case being of course more original. Combination of the two may be of even greater interest. Toward this goal, a critical examination of what happens to solutions at the crossing of pure space-like and time-like material discontinuities is given together with simple solutions for smooth transitions and numerical simulations in the discontinuous case. The effects on …


Waves In Materials With Microstructure: Numerical Simulation, Mihhail Berezovski, Arkadi Berezovski, Juri Engelbrecht Jan 2010

Waves In Materials With Microstructure: Numerical Simulation, Mihhail Berezovski, Arkadi Berezovski, Juri Engelbrecht

Publications

Results of numerical experiments are presented in order to compare direct numerical calculations of wave propagation in a laminate with prescribed properties and corresponding results obtained for an effective medium with the microstructure modelling. These numerical experiments allowed us to analyse the advantages and weaknesses of the microstructure model.


An Interpretation Of Martian Thermospheric Waves Based On Analysis Of A General Circulation Model, Manoj Joshi, Jeffery Hollingsworth, Robert Haberle, Alison Bridger Mar 2000

An Interpretation Of Martian Thermospheric Waves Based On Analysis Of A General Circulation Model, Manoj Joshi, Jeffery Hollingsworth, Robert Haberle, Alison Bridger

Faculty Publications, Meteorology and Climate Science

Planetary‐scale longitudinal variations in density observed by the Mars Global Surveyor accelerometer in the 125 km region can be qualitatively reproduced by the NASA Ames Mars general circulation model in the 80 km altitude region, but only when locations having specific local times are used in the analysis. If the model results are averaged over all local times, the high‐altitude longitudinal variations nearly disappear, leaving only a small stationary wave 1 pattern, consistent with theory and previous modeling studies. This analysis suggests that the observed wavelike structures are a result of sampling tidal modes at a limited range of local …