Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

PDF

Journal

2022

Lithium-ion batteries

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Multi-Electron Reaction-Boosted High Energy Density Batteries: Material And System Innovation, Rui-Qi Guo, Feng Wu, Xin-Ran Wang, Ying Bai, Chuan Wu Dec 2022

Multi-Electron Reaction-Boosted High Energy Density Batteries: Material And System Innovation, Rui-Qi Guo, Feng Wu, Xin-Ran Wang, Ying Bai, Chuan Wu

Journal of Electrochemistry

The continuous development of the global energy structure transformation has put forward higher demands upon the development of batteries. The improvements of the energy density have become one of the important indicators and hot topic for novel secondary batteries. The energy density of existing lithium-ion battery has encountered a bottleneck due to the limitations of material and systems. Herein, this paper introduces the concept and development of multi-electron reaction materials over the past twenty years. Guided by the multi-electron reaction, light weight electrode and multi-ion effect, current development strategies and future trends of high-energy-density batteries are highlighted from the perspective …


Advances And Atomistic Insights Of Electrolytes For Lithium-Ion Batteries And Beyond, Tingzheng Hou, Xiang Chen, Lu Jiang, Cheng Tang Nov 2022

Advances And Atomistic Insights Of Electrolytes For Lithium-Ion Batteries And Beyond, Tingzheng Hou, Xiang Chen, Lu Jiang, Cheng Tang

Journal of Electrochemistry

Electrolytes and the associated electrode-electrolyte interfaces are crucial for the development and application of high-capacity energy storage systems. Specifically, a variety of electrolyte properties, ranging from mechanical (compressibility, viscosity), thermal (heat conductivity and capacity), to chemical (solubility, activity, reactivity), transport, and electrochemical (interfacial and interphasial), are correlated to the performance of the resultant full energy storage device. In order to facilitate the operation of novel electrode materials, extensive experimental efforts have been devoted to improving these electrolyte properties by tuning the physical design and/or chemical composition. Meanwhile, the recent development of theoretical modeling methods is providing atomistic understandings of the …


Oligomeric Ionic Liquids: Bulk, Interface And Electrochemical Application In Energy Storage, Dan-Dan Li, Xiang-Yu Ji, Ming Chen, Yan-Ru Yang, Xiao-Dong Wang, Guang Feng Nov 2022

Oligomeric Ionic Liquids: Bulk, Interface And Electrochemical Application In Energy Storage, Dan-Dan Li, Xiang-Yu Ji, Ming Chen, Yan-Ru Yang, Xiao-Dong Wang, Guang Feng

Journal of Electrochemistry

Over recent years, oligomer ionic liquids (OILs), a novel class of ionic liquids, are becoming preferential electrolytes for high-performance energy-storage devices, such as supercapacitors with enhanced energy density and non-flammable lithium-ion batteries (LIBs). Herein, structures, properties, and their associations of the up-to-the-minute formulated OILs are systematically summarized and elaborately interpreted, especially for dicationic ionic liquids and tricationic ionic liquids. The physicochemical and electrochemical properties of OIL-based electrolytes are presented and analyzed, which are vitally important for supercapacitors and LIBs. Subsequently, the applications of OILs as electrolytes for supercapacitors and LIBs are summarized, with the comparisons of the energy-storage mechanisms and …


Facile One-Step Solid-State Synthesis Of Ni-Rich Layered Oxide Cathodes For Lithium-Ion Batteries, Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang, Chun Zhan Aug 2022

Facile One-Step Solid-State Synthesis Of Ni-Rich Layered Oxide Cathodes For Lithium-Ion Batteries, Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang, Chun Zhan

Journal of Electrochemistry

Nickel-rich layered oxide is one of the dominate cathode materials in the lithium ion batteries, due to its high specific energy density meeting the range requirement of the electric vehicles. Typically, the commercial Ni-rich layered oxides are synthesized from co-precipitated precursors, while precision control is required in the co-precipitation process to ensure the atomic level mixing of the cations such as Ni, Co and Mn, et.al. In this work, a one-step solid-state method was successfully applied to synthesize the Ni-rich layered oxide materials with ultra-high Ni content. By choosing the nickel hydroxides as the precursor with layered structure similar to …


Synthesis Of Lithium-Rich Manganese-Based Layered Cathode Materials And Study On Its Structural Evolution Of First Cycle Overcharge, Chen-Xu Luo, Chen-Guang Shi, Zhi-Yuan Yu, Ling Huang, Shi-Gang Sun Jan 2022

Synthesis Of Lithium-Rich Manganese-Based Layered Cathode Materials And Study On Its Structural Evolution Of First Cycle Overcharge, Chen-Xu Luo, Chen-Guang Shi, Zhi-Yuan Yu, Ling Huang, Shi-Gang Sun

Journal of Electrochemistry

Lithium-rich manganese-based cathode materials have become one of promising cathode materials due to their low cost and large discharge specific capacity exceeding 250 mAh·g-1. However, their problems such as low coulombic efficiency of first cycle and apparent voltage decay influence commercialization process. The high charging voltage will cause instability of structure and increase the hidden danger of the battery. Therefore, structural evolution of first cycle at higher voltage needs to be further studied. In this work, the precursor was synthesized by the co-precipitation method, and the lithium-rich manganese-based layered cathode materials were prepared by lithium-mixed and high-temperature sintering, and the …