Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

PDF

Virginia Commonwealth University

Additive manufacturing

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Material Extrusion-Based Additive Manufacturing: G-Code And Firmware Attacks And Defense Frameworks, Haris Rais Jan 2023

Material Extrusion-Based Additive Manufacturing: G-Code And Firmware Attacks And Defense Frameworks, Haris Rais

Theses and Dissertations

Additive Manufacturing (AM) refers to a group of manufacturing processes that create physical objects by sequentially depositing thin layers. AM enables highly customized production with minimal material wastage, rapid and inexpensive prototyping, and the production of complex assemblies as single parts in smaller production facilities. These features make AM an essential component of Industry 4.0 or Smart Manufacturing. It is now used to print functional components for aircraft, rocket engines, automobiles, medical implants, and more. However, the increased popularity of AM also raises concerns about cybersecurity. Researchers have demonstrated strength degradation attacks on printed objects by injecting cavities in the …


A Highly Conductive, Flexible, And 3d-Printable Carbon Nanotube-Elastomer Ink For Additive Bio-Manufacturing, Andy Shar, Phillip Glass, Daeha Joung Ph.D. Jan 2022

A Highly Conductive, Flexible, And 3d-Printable Carbon Nanotube-Elastomer Ink For Additive Bio-Manufacturing, Andy Shar, Phillip Glass, Daeha Joung Ph.D.

Undergraduate Research Posters

The synthesis of a highly conductive, flexible, 3D-printable, and biocompatible ink has been of great interest in the field of bio-based additive manufacturing. Various applications include ultra-sensitive, microscale tactile sensors, patient-customizable scaffolds for cardiac and nerve tissue regeneration, and flexible electrocardiogram (ECG) electrodes. Here, a novel elastomeric carbon nanocomposite is presented consisting of amino-functionalized carbon nanotubes (CNT-NH2) homogenously dispersed in a one-part room-temperature vulcanizing (RTV) silicone matrix. The use of acetone as a swelling solvent aids in electrical percolation through the elastomer matrix. CNT-NH2 ratios can be tuned to fit various needs; higher tensile strength is favored …