Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Novel Adsorbent For Industrial Wastewater Treatment Applications, Islam M. Al-Akraa, Ahmed Y. Zakaria Eng, Dalia A. Ali Eng, Hany A. Elazab Dr, Hoda A. Elsawy Dr Jan 2019

Novel Adsorbent For Industrial Wastewater Treatment Applications, Islam M. Al-Akraa, Ahmed Y. Zakaria Eng, Dalia A. Ali Eng, Hany A. Elazab Dr, Hoda A. Elsawy Dr

Chemical Engineering

In this study, the hydroxyapatite powder is investigated for both of methylene blue and thymol blue in aqueous solution. The physical and chemical properties of the adsorbent were evaluated systematically using the different techniques including Microsoft Excel programming, linear regression model and also the coefficient of determination. Batch adsorption experiments were conducted to determine the effect of contact time, solution pH, initial dye concentrations, and also the adsorbent dosage on adsorption. The adsorption kinetic parameters confirmed the better fitting of pseudo-second order kinetic model for both of methylene blue and thymol blue. The isotherm data of methylene blue and thymol …


Porous Co3O4 Hollow Nanospheres Cathode Catalyst For High-Capacity And Long-Cycle Li-Air Batteries, Tong Liu, Na Li, Qing-Chao Liu, Xin-Bo Zhang Apr 2015

Porous Co3O4 Hollow Nanospheres Cathode Catalyst For High-Capacity And Long-Cycle Li-Air Batteries, Tong Liu, Na Li, Qing-Chao Liu, Xin-Bo Zhang

Journal of Electrochemistry

In this paper, a high specific surface area of porous Co3O4 hollow nanospheres was successfully synthesized via hydrothermal carbonization at 140 oC, followed by calcination using cobalt nitrate hexahydrate (Co(NO3)2·6H2O), hexamethylenetetramine (HMT), sucrose, and sodium citrate (Na3C6H5O7). The porous Co3O4 hollow nanospheres consisted of nanoparticles with high specific surface area of mesoporous structure, and could provide active reaction sites for OER and ORR. When used as lithium-air battery cathode catalyst, the Co3O4/Super P (SP) electrode …


Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li Dec 2013

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li

Journal of Electrochemistry

Dispersed spherical Fe3O4 nanoparticles were synthesized by a hydrothermal method. The influences of odecyl trimethyl ammonium bromide (DTAB) concentration on the morphology and particle size of the as-prepared Fe3O4 were studied. Electrochemical performance of the as-prepared sample as anode materials of lithium ion battery was investigated. It is found that the as-prepared sample exhibits superior rate performance and cycle performance. The nano-sized materials provide structural stability and favor the transfer of lithium ions.


Size-Driven Domain Reorientation In Hydrothermally Derived Lead Titanate Nanoparticles, Zhiyuan Ye, Elliot B. Slamovich, Alexander H. King Mar 2005

Size-Driven Domain Reorientation In Hydrothermally Derived Lead Titanate Nanoparticles, Zhiyuan Ye, Elliot B. Slamovich, Alexander H. King

Alexander H. King

High-resolution transmission electron microscopy studies of hydrothermally derived platelike lead titanate nanoparticles reveal that below a critical size of approximately 70 nm, the single ferroelectric domain polarization axis reorients from perpendicular to parallel to the plate. We suggest that during particle growth, ions in the hydrothermal processing medium compensate for the ferroelectric depolarization energy. When the processing medium is removed by washing and drying, single domain nanoparticles minimize their depolarization energy by c-axis flipping.