Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

A Spin-Coated Tiox/Pt Nanolayered Anodic Catalyst For The Direct Formic Acid Fuel Cells, Islam M. Al-Akraa, Ahmad M. Mohammad Prof Jan 2020

A Spin-Coated Tiox/Pt Nanolayered Anodic Catalyst For The Direct Formic Acid Fuel Cells, Islam M. Al-Akraa, Ahmad M. Mohammad Prof

Chemical Engineering

The CO poisoning of the platinum anodic catalyst which typically functions the catalytic deterioration of the direct formic acid fuel cells could be minimized with a simple modification for Pt with titanium oxide. The fabrication scheme involved the spin-coating of a Ti precursor onto a Pt thin layer that was physically sputtered onto a Si substrate. The whole assembly was subjected to a post-annealing processing to produce the TiOx layer (60 nm) in a porous structure (mostly Anatase) atop of the Pt surface. The porous nature of the TiOx layer permitted the participation of Pt in the electrocatalysis of the …


Electrocatalytic Reduction Of Carbon Dioxide To Carbon Monoxide Using Cobalt Nitride, Chen Ma, Peng-Fei Hou, Peng Kang Aug 2019

Electrocatalytic Reduction Of Carbon Dioxide To Carbon Monoxide Using Cobalt Nitride, Chen Ma, Peng-Fei Hou, Peng Kang

Journal of Electrochemistry

Electrocatalytic reduction of carbon dioxide (CO2) is a promising method to alleviate global warming issues, although it still faces many challenges. Herein, we report cobalt nitride for electrocatalytic reduction of CO2 to carbon monoxide (CO) in an aqueous electrolyte. A comparison of catalysts with different preparation temperatures and atmospheres suggests that nitrogen doping is critical to improve catalytic activity. For the most active catalyst of 700-Co5.47N/C, the CO current density reached 9.78 mA·cm-2 at potential of -0.7 V vs. RHE. In addition, the CO/H2 ratio could be adjusted from 1:3 to 3:2 by …


Adsorption And Electrooxidation Of Carbon Monoxide On Platinum Surfaces Modified With Sulfur, A. Mattox Mathew, W. Henney Matthew, Johnson Adam, Zou Shouzhong Dec 2012

Adsorption And Electrooxidation Of Carbon Monoxide On Platinum Surfaces Modified With Sulfur, A. Mattox Mathew, W. Henney Matthew, Johnson Adam, Zou Shouzhong

Journal of Electrochemistry

Adsorbed sulfur is commonly considered as a reaction poison. However, small amounts of sulfur on platinum significantly increase the surface reactivity toward carbon monoxide (CO) electrooxidation. For the solution CO oxidation, the onset potential was shifted up to over 300 mV negative to that on S-free surface, and the extent of the negative potential shift increases with the sulfur coverage (Xs) up to about 0.6. The enhanced CO oxidation also depends on the solution pH. For the adsorbed CO, at low sulfur coverages (Xs < 0.3), the oxidation peak potential is about 40 mV negative to that of the corresponding clean Pt. However, at higher coverages, the peak potential is about 30 mV more positive. Surface-enhanced Raman spectra show that the adsorption of sulfur significantly redshifts the Pt-CO stretching frequency. These observations are explained by the weakening of the Pt-CO bond and the hindrance of CO diffusion by Sads.


Development Of Tailor-Designed Gold-Platinum Nanoparticles Binary Catalysts For Efficient Formic Acid Electrooxidation, Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof Jan 2012

Development Of Tailor-Designed Gold-Platinum Nanoparticles Binary Catalysts For Efficient Formic Acid Electrooxidation, Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof

Chemical Engineering

The modification of a glassy carbon (GC) electrode with platinum (PtNPs) and gold (AuNPs) nanoparticles is targeted to fabricate efficient anodes for the electrooxidation of formic acid (FA). A proper adjustment of the deposition sequence of PtNPs and AuNPs could eventually enhance the electrocatalytic activity of the electrode in such a way that suppresses the CO poisoning effect during FA oxidation. The highest catalytic activity is obtained at the Au/Pt/GC electrode (with PtNPs firstly deposited on the GC electrode followed by AuNPs). This superb enhancement is quantified by comparing the relative ratio of the direct vs. the indirect oxidation peaks …


The Mechanism Of ~(13)Co_(Ad)/~(12)Co Isotope Exchange At Pt Electrode,A Combined Study By Electrochemical In-Situ Infrared Spectroscopy And Dipole-Dipole Coupling Analysis, Sang-Zi Liang, Shao-Xiong Liu, Ling-Wen Liao, Qian Tao, Jing Kang, Yan-Xia Chen Aug 2010

The Mechanism Of ~(13)Co_(Ad)/~(12)Co Isotope Exchange At Pt Electrode,A Combined Study By Electrochemical In-Situ Infrared Spectroscopy And Dipole-Dipole Coupling Analysis, Sang-Zi Liang, Shao-Xiong Liu, Ling-Wen Liao, Qian Tao, Jing Kang, Yan-Xia Chen

Journal of Electrochemistry

In this contribution,we have analyzed the IR spectra of saturated CO adlayer at rough Pt film electrode as a function of fractional surface coverage of 13COad/12COad recorded during 13COad /12CO isotope exchange process according to dipole-dipole coupling theory and coherent potential approximation. By properly choosing the parameters of adlayer structure and dipole-dipole coupling interaction under coherent potential approximation, we demonstrated that we can successfully simulate the IR spectra as a function of the surface coverage of CO adlayer at rough Pt film electrodes by assuming that COad molecules with low C—O stretching frequencies are dis- placed preferentially during the 13COad/12CO …


Electrocatalytic Performance Of Pt/C And Pt/Wo_3/C Catalysts For Methanol Oxidation, Yuan-Yuan Chu, Bing Wu, Ya-Wen Tang, Tian-Hong Lu, Ying Gao May 2008

Electrocatalytic Performance Of Pt/C And Pt/Wo_3/C Catalysts For Methanol Oxidation, Yuan-Yuan Chu, Bing Wu, Ya-Wen Tang, Tian-Hong Lu, Ying Gao

Journal of Electrochemistry

The catalysts of Carbon supported Pt(Pt/C) and carbon supported Pt/WO3(Pt/WO3/C) were prepared with liquid phase reduction method.It was found that the catalytic activity and stability of the Pt/WO3/C catalysts were increased with the addition of WO3.When the atomic ratio of Pt and W was 1∶1,the best electrocatalytic performance of the Pt/WO3/C catalyst for the methanol oxidation was obtained.This is attributed to the larger electrochemical surface area of Pt/WO3/C and the weeker adsorption of CO towards the catalyst.