Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

Theses/Dissertations

2019

Institution
Keyword
Publication

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Evaluation Of The Mechanisms And Effectiveness Of Nano-Hydroxides, Wood And Dairy Manure-Derived Biochars To Remove Fluoride And Heavy Metals From Water, Anna Rose Wallace, Wenjie Sun Dr, Chunming Su Dr Dec 2019

Evaluation Of The Mechanisms And Effectiveness Of Nano-Hydroxides, Wood And Dairy Manure-Derived Biochars To Remove Fluoride And Heavy Metals From Water, Anna Rose Wallace, Wenjie Sun Dr, Chunming Su Dr

Civil and Environmental Engineering Theses and Dissertations

The development of effective treatment processes for the removal contaminants, such as fluoride and heavy metals, from polluted water have been urgently needed due to serious environmental health and safety concerns. In this dissertation, a variety of materials including various (hydro)oxide nanomaterials, biochars and surface modified biochar were studied to evaluate their effectiveness and mechanism on removing fluoride or mixed heavy metals from water.

In the Chapter 2, this study investigated the adsorptive removal of fluoride from water using various (hydro)oxide nanomaterials, focusing on ferrihydrite, hydroxyapatite (HAP) and brucite, which have the potential to be used as sorbents for surface …


Instrumentation For Dynamic Nuclear Polarization And Application Of Electron Decoupling For Electron Relaxation Measurement, Nicholas Howard Alaniva Dec 2019

Instrumentation For Dynamic Nuclear Polarization And Application Of Electron Decoupling For Electron Relaxation Measurement, Nicholas Howard Alaniva

Arts & Sciences Electronic Theses and Dissertations

Dynamic nuclear polarization nuclear magnetic resonance (DNP NMR) exploits internal electron spin and nuclear spin interactions to increase sensitivity and uncover valuable information regarding structure and dynamics of a system. To manipulate these interactions, instrumentation is developed to combine high-power microwave and radiofrequency irradiation with the ability to spin samples at the magic angle (MAS) at temperatures from 90 K to 4.2 K. Electron decoupling uses frequency-modulated microwaves to mitigate the electron-nuclear dipolar interaction, improving signal intensity and resolution in DNP NMR experiments. Electron decoupling is combined with short DNP periods to encode electron spin information in polarized nuclear signal. …


Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li Oct 2019

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li

Doctoral Dissertations

The advent of miniature electronic devices demands power sources of commensurate form factors. This spurs the research of micro energy storage devices, e.g., 3D microbatteries. A 3D microbattery contains nonplanar microelectrodes with high aspect ratio and high surface area, separated by a nanoscale electrolyte. The device takes up a total volume as small as 10 mm3, allowing it to serve on a chip and to provide power in-situ. The marriage of nanotechnology and electrochemical energy storage makes microbattery research a fascinating field with both scientific excitement and application prospect. However, successful fabrication of well-functioned key components …


Novel Avenues Toward Controlling The Photophysical Properties Of Ultra-Small Silicon Quantum Dots, Mohammed Abdelhameed Oct 2019

Novel Avenues Toward Controlling The Photophysical Properties Of Ultra-Small Silicon Quantum Dots, Mohammed Abdelhameed

Electronic Thesis and Dissertation Repository

Quantum dots (QDs) have attracted an increasing attention in the last decade over many conventional organic dyes. This is due to their unique optical properties including broad absorption spectra, high photostability, and size-tunable photoluminescence (PL). However, some toxicity concerns associated with traditional quantum dots have hindered their wide applicability. Interestingly, silicon quantum dots (SQDs) have been shown to be more advantageous than most of QDs thanks to their excellent biocompatibility and biodegradability, low cytotoxicity, and versatile surface functionalization capability. Thus, SQDs are promising candidates for various biological and biomedical applications such as bioimaging, biosensing, and photodynamic therapy. Unfortunately, only a …


Shape-Controlled Nanoparticles As Effective Catalysts For Proton Exchange Membrane (Pem) Fuel Cells, Ali Feizabadi Sep 2019

Shape-Controlled Nanoparticles As Effective Catalysts For Proton Exchange Membrane (Pem) Fuel Cells, Ali Feizabadi

Electronic Thesis and Dissertation Repository

Polymer electrolyte membrane fuel cell (PEMFC), is considered a promising candidate for the next generation power sources in transportation, stationary and portable applications. However, oxygen reduction reaction (ORR), one of the key reactions occurring on PEMFC is kinetically slow; this has limited performance and further advancement in this kind of fuel cells. Thus, improving the PEMFC efficiency requires a thorough understanding of the ORR mechanism on the desired catalyst. To address the above-mentioned demands, the scope of this thesis is focused on the fundamental understanding of facet-controlled nanoparticles, metal-support interactions, and bimetallic platinum catalysts, utilizing synchrotron-based X-ray absorption, X-ray photoelectron …


Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss Sep 2019

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine …


Magic Angle Spinning Spheres And Improved Microwave Coupling For Magnetic Resonance, Pin-Hui Chen Aug 2019

Magic Angle Spinning Spheres And Improved Microwave Coupling For Magnetic Resonance, Pin-Hui Chen

Arts & Sciences Electronic Theses and Dissertations

Nuclear magnetic resonance (NMR) is a nondestructive technique used to characterize molecular structure and dynamics with atomic resolution. In solid-state NMR, magic angle spinning (MAS) is commonly implemented to improve spectral resolution by partially averaging anisotropic interactions. To further improve NMR sensitivity, dynamic nuclear polarization (DNP) is utilized to transfer the polarization from electron spins to nuclei of interest using microwaves. Advanced MAS DNP NMR instrumentation, such as spherical rotors for stable and fast spinning, dielectric lenses to effectively couple the microwaves into the sample, and the separation of receiving and transmitting circuits to decrease measurement noise, are developed to …


Wave Function Engineering In Cdse/Pbs Core/Shell Nanocrystal Heterostructures, Brian Matthew Wieliczka Aug 2019

Wave Function Engineering In Cdse/Pbs Core/Shell Nanocrystal Heterostructures, Brian Matthew Wieliczka

Arts & Sciences Electronic Theses and Dissertations

Colloidal semiconducting nanocrystals hold significant potential for third generation photovoltaics as solution processable materials that can surpass the Shockley-Queisser limit through multiexciton generation. In pursuit of this goal, the synthesis and optical characterization of CdSe/PbS core/shell quantum dots is reported. The spectroscopic behavior of these particles demonstrates their potential for use in optoelectronic devices, taking advantage of wave function engineering of the electron and hole. The rock salt PbS shell grows on all sides of the underlying zinc blende CdSe quantum dot, creating a core/shell structure. With increasing shell thickness, the band edge absorption and photoluminescence transitions decrease in energy …


Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin May 2019

Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin

McKelvey School of Engineering Theses & Dissertations

Abstract of the Dissertation

Defect Chemistry and Ion Intercalation During the Growth and Solid-State Transformation of Metal Halide Nanocrystals

Semiconductor metal halides as light-sensitive materials have applications in multiple areas, such as photographic film, antibacterial agents and photocatalysts. One focus of this dissertation is to achieve novel morphologies of ternary silver bromoiodide (AgBr1-xIx, 0

For the silver halide system, we demonstrate that the anion composition of AgBr1-xIx nanocrystals determines their shape through the introduction of twin defects as the nanocrystals are made more iodide-rich. AgBr1-xIx nanocrystals grow as single-phase, solid solutions with the rock salt crystal structure for anions compositions …


Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath May 2019

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath

Graduate Theses and Dissertations

The intricate nanostructures of layered titanates are unique among nanomaterials due to their easy and inexpensive syntheses. These nanomaterials have been proven valuable for use in industries as varied as energy, water treatment, and healthcare, and can be produced at industrial scales using already existent equipment. They have complex morphology, and surface structure well suited to chemical modification and doping. However, there is a longstanding debate on their lattice structure after the doping. There is a long-unmet need to understand, using both experimental and simulation methods, how dopants alter the clay-like layered crystal structure and associated physical and chemical properties. …


Engineering Multifunctional And Morphologically Diverse Polymer Brush Surfaces, Cassandra M. Reese May 2019

Engineering Multifunctional And Morphologically Diverse Polymer Brush Surfaces, Cassandra M. Reese

Dissertations

The combination of surface-initiated polymerization (SIP) and post-polymerization (PPM) serves as a powerful approach to fabricate complex, multifunctional polymer films, which can be precisely tuned for desired surface engineering applications. Careful manipulation of PPM parameters such as reaction conditions, the tethered brush parameters, and the physical properties of the unbound post-modifier greatly influence the depth of penetration of the post-modifier and the polymer brush compositional heterogeneity. This dissertation focuses on engineering polymer brush surfaces with multifunctional chemistries and tunable morphologies by investigating the PPM parameters that dictate the distribution of post-modifiers on grafted polymer brush surfaces.

The first chapter of …


Control Strategies For Multi-Evaporator Vapor Compression Cycles, Sunderlin D. Jackson Mar 2019

Control Strategies For Multi-Evaporator Vapor Compression Cycles, Sunderlin D. Jackson

Theses and Dissertations

Next-generation military aircraft must be able to handle highly transient thermal loads that exceed the ability of current aircraft thermal subsystems. Vapor compression cycle systems are a particular refrigeration technology that is an attractive solution for dealing with this challenge, due primarily to their high efficiency. However, there are several barriers to realizing the benefits of vapor cycles systems for controlling thermal loads in military aircraft. This thesis focuses on addressing the challenge of controlling vapor cycles in the presence of highly transient evaporator heat loads. Specifically, a linear quadratic regulator (LQR) is designed for a simple vapor cycle system, …


Tools For Understanding Static Structure Factors And Their Application To Simulations Of Liquids, Travis Mackoy Jan 2019

Tools For Understanding Static Structure Factors And Their Application To Simulations Of Liquids, Travis Mackoy

Graduate Research Theses & Dissertations

Molecular dynamics (MD) simulations can be used to compute static structure factors (��(��)) and provide an interpretation of the underlying periodic atomic ordering. MD simulations complement experimentally measured ��(��) by allowing qualitative assignment of peaks to various ordering, such as cation-anion ordering in ionic liquids, via decomposition of ��(��) into partial ��(��). Here we present a method for classifying interatomic distances that allows for quantitative peak assignment and visualization of atoms that contribute most to each peak in calculated ��(��) for soft materials. The method is illustrated by investigating ��(��) for the ionic liquid 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide (C4C1pyrrTFSI), which shows two …


Synthesis Of Cadmium Arsenide Semiconductor Nanoparticles, Superatomic Silver Clusters, And Silver Coordination Polymers, Sarthak Jashubhai Patel Jan 2019

Synthesis Of Cadmium Arsenide Semiconductor Nanoparticles, Superatomic Silver Clusters, And Silver Coordination Polymers, Sarthak Jashubhai Patel

Legacy Theses & Dissertations (2009 - 2024)

Nanomaterials have chemical, electronic, optical, and other properties distinct from their bulk counterparts. However, the atom-precise synthesis of these materials remains a challenge, leaving open many scientific questions regarding the size regime between nanoparticulate (quantum confined) and bulk character. In this work, efforts toward the synthesis of nanoparticulate and atom-precise metal and semimetal materials are described. The synthesis of II-V semiconductor Cd3As2 having a near-zero bandgap is discussed. Analysis by UV-Vis absorption spectroscopy and powder X-ray diffraction indicate the formation of material with unexpected crystallinity and absorption properties The interaction between the molecular source of As and the solvent was …


Adhesion At Solid/Liquid Interfaces, Neda Ojaghlou Jan 2019

Adhesion At Solid/Liquid Interfaces, Neda Ojaghlou

Theses and Dissertations

The adhesion at solid/liquid interface plays a fundamental role in diverse fields and helps explain the structure and physical properties of interfaces, at the atomic scale, for example in catalysis, crystal growth, lubrication, electrochemistry, colloidal system, and in many biological reactions. Unraveling the atomic structure at the solid/liquid interface is, therefore, one of the major challenges facing the surface science today to understand the physical processes in the phenomena such as surface coating, self-cleaning, and oil recovery applications. In this thesis, a variety of theory/computational methods in statistical physics and statistical mechanics are used to improve understanding of water adhesion …