Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Modelling In Vitro Dissolution And Release Of Sumatriptan Succinate From Polyvinylpyrrolidone-Based Microneedles Aided By Iontophoresis, James Paul Ronnander Aug 2019

Modelling In Vitro Dissolution And Release Of Sumatriptan Succinate From Polyvinylpyrrolidone-Based Microneedles Aided By Iontophoresis, James Paul Ronnander

Dissertations

A novel dissolving microneedle array system is developed to investigate permeation of a sumatriptan succinate formulations through the skin aided by iontophoresis. Three formulations consisting of hydrophilic, positively charged drug molecules encapsulated in a water-soluble biologically suitable polymer, polyvinylpyrrolidone (PVP), have been accepted by the U.S. Food and Drug Administration (FDA). The microneedle systems are fabricated with 600 pyramid-shaped needles, each 500 µm tall, on a 0.785-cm2 circular array. In vitro transdermal studies with minipig skin and vertical Franz diffusion cells show > 68% permeation of sumatriptan over a 24-hour period. A combination of microneedle and electrical current density ranging …


Roles Of Surfactant And Binary Polymers On Dissolution Enhancement Of Bcs Ii Drugs From Nanocomposites And Amorphous Solid Dispersions, Md Mahbubur Rahman Aug 2019

Roles Of Surfactant And Binary Polymers On Dissolution Enhancement Of Bcs Ii Drugs From Nanocomposites And Amorphous Solid Dispersions, Md Mahbubur Rahman

Dissertations

Drug nanocomposites and amorphous solid dispersions (ASDs) are two major formulation platforms used for the bioavailability enhancement of BCS Class II drugs. The major drawback of nanocomposites is their inability to attain high drug supersaturation during in vitro (<50% relative supersaturation) and in vivo dissolution. On the other hand, formulating an amorphous solid dispersion (ASD) with high drug loading (>20%) that releases drug rapidly, while generating and maintaining high supersaturation over at least three hours is challenging. The goal of this thesis is to develop a fundamental understanding of the impact of anionic surfactants–polymers on in vitro drug release from nanocomposites and ASDs, while addressing the above challenges. To achieve this goal, the following objectives are set: (1) compare griseofulvin …