Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Cluster-Based Chained Transfer Learning For Energy Forecasting With Big Data, Yifang Tian Dec 2019

Cluster-Based Chained Transfer Learning For Energy Forecasting With Big Data, Yifang Tian

Electronic Thesis and Dissertation Repository

Smart meter popularity has resulted in the ability to collect big energy data and has created opportunities for large-scale energy forecasting. Machine Learning (ML) techniques commonly used for forecasting, such as neural networks, involve computationally intensive training typically with data from a single building/group to predict future consumption for that same building/group. With hundreds of thousands of smart meters, it becomes impractical or even infeasible to individually train a model for each meter. Consequently, this paper proposes Cluster-Based Chained Transfer Learning (CBCTL), an approach for building neural network-based models for many meters by taking advantage of already trained models through …


Receptive Fields Optimization In Deep Learning For Enhanced Interpretability, Diversity, And Resource Efficiency., Babajide Odunitan Ayinde May 2019

Receptive Fields Optimization In Deep Learning For Enhanced Interpretability, Diversity, And Resource Efficiency., Babajide Odunitan Ayinde

Electronic Theses and Dissertations

In both supervised and unsupervised learning settings, deep neural networks (DNNs) are known to perform hierarchical and discriminative representation of data. They are capable of automatically extracting excellent hierarchy of features from raw data without the need for manual feature engineering. Over the past few years, the general trend has been that DNNs have grown deeper and larger, amounting to huge number of final parameters and highly nonlinear cascade of features, thus improving the flexibility and accuracy of resulting models. In order to account for the scale, diversity and the difficulty of data DNNs learn from, the architectural complexity and …


Multi-Column Neural Networks And Sparse Coding Novel Techniques In Machine Learning, Ammar O. Hoori Jan 2019

Multi-Column Neural Networks And Sparse Coding Novel Techniques In Machine Learning, Ammar O. Hoori

Theses and Dissertations

Accurate and fast machine learning (ML) algorithms are highly vital in artificial intelligence (AI) applications. In complex dataset problems, traditional ML methods such as radial basis function neural network (RBFN), sparse coding (SC) using dictionary learning, and particle swarm optimization (PSO) provide trivial results, large structure, slow training, and/or slow testing. This dissertation introduces four novel ML techniques: the multi-column RBFN network (MCRN), the projected dictionary learning algorithm (PDL) and the multi-column adaptive and non-adaptive particle swarm optimization techniques (MC-APSO and MC-PSO). These novel techniques provide efficient alternatives for traditional ML techniques. Compared to traditional ML techniques, the novel ML …