Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering

Series

Mechanical properties

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Evaluation Of Microstructural And Mechanical Behavior Of Ahss Cp780 Steel Welded By Gmaw-Pulsed And Gmaw-Pulsed-Brazing Processes, Alan Jadir Romero-Orozco, Jaime Taha-Tijerina, Rene De Luna-Alanis, Victor Hugo Lopez-Morelos, Maria Del Carmen Ramirez, Melchor Salazar-Martinez, Francisco Fernando Curiel-Lopez Mar 2022

Evaluation Of Microstructural And Mechanical Behavior Of Ahss Cp780 Steel Welded By Gmaw-Pulsed And Gmaw-Pulsed-Brazing Processes, Alan Jadir Romero-Orozco, Jaime Taha-Tijerina, Rene De Luna-Alanis, Victor Hugo Lopez-Morelos, Maria Del Carmen Ramirez, Melchor Salazar-Martinez, Francisco Fernando Curiel-Lopez

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Joints of complex phase 780 (CP-780) advanced high strength steel (AHSS) were carried out by using an ER-CuAl-A2 filler metal for the gas metal arc welding pulsed brazing (GMAW-P- brazing) process and the ER-80S-D2 for the GMAW-P process employing two levels of heat input. The phases in the weld bead and HAZ were analyzed, and the evaporation of zinc by means of scanning electron microscopy (SEM) was also monitored. The mechanical properties of the welded joints were evaluated by tension, microhardness and vertical impact tests. It was found that there was greater surface Zn evaporation in the joints welded with …


Microstructure And Mechanical Properties At Different Length Scales And Strain Rates Of Nanocrystalline Tantalum Produced By High-Pressure Torsion, Q. Wei, Z. L. Pan, X. L. Wu, B. E. Schuster, L. J. Kecdkes, R. Z. Valiev Jan 2011

Microstructure And Mechanical Properties At Different Length Scales And Strain Rates Of Nanocrystalline Tantalum Produced By High-Pressure Torsion, Q. Wei, Z. L. Pan, X. L. Wu, B. E. Schuster, L. J. Kecdkes, R. Z. Valiev

US Army Research

Fully dense, nanocrystalline tantalum (average grain size as small as ~40 nm) has been processed for the first time by high-pressure torsion. High-resolution transmission electron microscopy reveals non-equilibrium grain boundaries and grains decorated with high-density dislocations. Microhardness measurements and instrumented nanoindentation experiments indicate that the mechanical property is quite uniform except for the central area of the disks. Nanoindentation experiments at different strain rates suggest that the strain rate sensitivity of nanocrystalline tantalum is increased compared to the coarse- and ultrafine-grained counterparts and is accompanied by an activation energy of the order of a few ~b3 (b is the magnitude …