Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

The Tides They Are A-Changin’: A Comprehensive Review Of Past And Future Nonastronomical Changes In Tides, Their Driving Mechanisms And Future Implications, Ivan D. Haigh, Mark D. Pickering, J.A. Mattias Green, Brian K. Arbic, Arne Arns, Soenke Dangendorf, David Hill, David A. Jay, Multiple Additional Authors Jan 2019

The Tides They Are A-Changin’: A Comprehensive Review Of Past And Future Nonastronomical Changes In Tides, Their Driving Mechanisms And Future Implications, Ivan D. Haigh, Mark D. Pickering, J.A. Mattias Green, Brian K. Arbic, Arne Arns, Soenke Dangendorf, David Hill, David A. Jay, Multiple Additional Authors

Civil and Environmental Engineering Faculty Publications and Presentations

Scientists and engineers have observed for some time that tidal amplitudes at many locations are shifting considerably due to non-astronomical factors. Here we review comprehensively these important changes in tidal properties, many of which remain poorly understood. Over long geological time-scales, tectonic processes drive variations in basin size, depth, and shape, and hence the resonant properties of ocean basins. On shorter geological time-scales, changes in oceanic tidal properties are dominated by variations in water depth. A growing number of studies have identified widespread, sometimes regionally-coherent, positive and negative trends in tidal constituents and levels during the 19th, 20th and early …


Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello Jan 2009

Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello

Masters Theses 1911 - February 2014

Periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide drag reduction in the laminar flow regime, have been demonstrated capable of reducing drag in the turbulent flow regime as well. Superhydrophobic surfaces contain micro or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to skin friction drag reductions approaching 50%. At a given Reynolds number, drag reduction was found to increase with increasing feature size and spacing, as in …