Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Separating Signal From Noise In High-Density Diffuse Optical Tomography, Arefeh Sherafati Aug 2020

Separating Signal From Noise In High-Density Diffuse Optical Tomography, Arefeh Sherafati

Arts & Sciences Electronic Theses and Dissertations

High-density diffuse optical tomography (HD-DOT) is a relatively new neuroimaging technique that detects the changes in hemoglobin concentrations following neuronal activity through the measurement of near-infrared light intensities. Thus, it has the potential to be a surrogate for functional MRI (fMRI) as a more naturalistic, portable, and cost-effective neuroimaging system. As in other neuroimaging modalities, head motion is the most common source of noise in HD-DOT data that results in spurious effects in the functional brain images. Unlike other neuroimaging modalities, data quality assessment methods are still underdeveloped for HD-DOT. Therefore, developing robust motion detection and motion removal methods in …


Growth Of Small Particles In Nonequilibrium Plasmas, Necip Berker Üner Aug 2020

Growth Of Small Particles In Nonequilibrium Plasmas, Necip Berker Üner

McKelvey School of Engineering Theses & Dissertations

Nonequilibrium plasma (NEP) is an extraordinary environment for material synthesis. NEP is comprised of hot electrons with temperatures greater than 10000 K and of cold ions and neutrals that are usually at few hundred kelvins above room temperature. Due to this large difference in species’ temperatures, the assumption of local thermal equilibrium does not hold in NEP. Therefore, NEP can act as a unique processor of mass, and it can transform materials along pathways that are not accessible by methods wherein local thermal equilibrium is valid. For decades, NEPs have been employed in the semiconductor industry to manufacture many thin …


Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson May 2020

Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson

Arts & Sciences Electronic Theses and Dissertations

The large absorption cross sections and the tunability of the energetic spacings between the states in the conduction (CB) and valence band (VB) within a semiconductor nanoparticle (NP) make them promising media for capturing electromagnetic radiation and converting it into charge carriers, or electricity. In photovoltaic devices that incorporate semiconductor NPs, it would be ideal if every photon could be absorbed by a NP and the carriers could be collected with perfect efficiency and without loss of energy. The relaxation pathways of the carriers within the NPs down to the band edge and their fate at the band edge contribute …


Nanoscale Colocalization Of Fluorogenic Probes Reveals The Role Of Oxygen Vacancies In The Photocatalytic Activity Of Tungsten Oxide Nanowires, Meikun Shen, Tianben Ding, Steven T. Hartman, Fudong Wang, Christina Krucylak, Zheyu Wang, Che Tan, Bo Yin, Rohan Mishra, Matthew D. Lew, Bryce Sadtler Jan 2020

Nanoscale Colocalization Of Fluorogenic Probes Reveals The Role Of Oxygen Vacancies In The Photocatalytic Activity Of Tungsten Oxide Nanowires, Meikun Shen, Tianben Ding, Steven T. Hartman, Fudong Wang, Christina Krucylak, Zheyu Wang, Che Tan, Bo Yin, Rohan Mishra, Matthew D. Lew, Bryce Sadtler

Electrical & Systems Engineering Publications and Presentations

Defect engineering is a strategy that has been widely used to design active semiconductor photocatalysts. However, understanding the role of defects, such as oxygen vacancies, in controlling photocatalytic activity remains a challenge. Here, we report the use of chemically triggered fluorogenic probes to study the spatial distribution of active regions in individual tungsten oxide nanowires using super-resolution fluorescence microscopy. The nanowires show significant heterogeneity along their lengths for the photocatalytic generation of hydroxyl radicals. Through quantitative, coordinate-based colocalization of multiple probe molecules activated by the same nanowires, we demonstrate that the nanoscale regions most active for the photocatalytic generation of …