Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Drug-Based Therapeutic Strategies For Covid-19-Infected Patients And Their Challenges, Khatereh Zarkesh, Elaheh Entezar-Almahdi, Parisa Ghasemiyeh, Mohsen Akbarian, Marzieh Bahmani, Shahrzad Roudaki, Rahil Fazlinejad, Soliman Mohammadi-Samani, Negar Firouzabadi, Majid Hosseini, Fatemeh Farjadian Nov 2021

Drug-Based Therapeutic Strategies For Covid-19-Infected Patients And Their Challenges, Khatereh Zarkesh, Elaheh Entezar-Almahdi, Parisa Ghasemiyeh, Mohsen Akbarian, Marzieh Bahmani, Shahrzad Roudaki, Rahil Fazlinejad, Soliman Mohammadi-Samani, Negar Firouzabadi, Majid Hosseini, Fatemeh Farjadian

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Emerging epidemic-prone diseases have introduced numerous health and economic challenges in recent years. Given current knowledge of COVID-19, herd immunity through vaccines alone is unlikely. In addition, vaccination of the global population is an ongoing challenge. Besides, the questions regarding the prevalence and the timing of immunization are still under investigation. Therefore, medical treatment remains essential in the management of COVID-19. Herein, recent advances from beginning observations of COVID-19 outbreak to an understanding of the essential factors contributing to the spread and transmission of COVID-19 and its treatment are reviewed. Furthermore, an in-depth discussion on the epidemiological aspects, clinical symptoms …


Self-Learned Kernel Low Rank Approach To Accelerated High Resolution 3d Diffusion Mri, Abhijit Baul, Nian Wang, Choyi Zhang, Yuchou Chang, Leslie Ying, Yuchou Chang, Ukash Nakarmi Nov 2021

Self-Learned Kernel Low Rank Approach To Accelerated High Resolution 3d Diffusion Mri, Abhijit Baul, Nian Wang, Choyi Zhang, Yuchou Chang, Leslie Ying, Yuchou Chang, Ukash Nakarmi

Electrical and Computer Engineering Faculty Publications and Presentations

Diffusion Magnetic Resonance Imaging (dMRI) is a promising method to analyze the subtle changes in the tissue structure. However, the lengthy acquisition time is a major limitation in the clinical application of dMRI. Different image acquisition techniques such as parallel imaging, compressed sensing, has shortened the prolonged acquisition time but creating high-resolution 3D dMRI slices still requires a significant amount of time. In this study, we have shown that high resolution 3D dMRI can be reconstructed from the highly undersampled k-space and q-space data using a Kernel Low Rank method. Our proposed method has outperformed the conventional CS methods in …


Numerical Study Of Fully Coupled Fluid-Structure Interaction Of Stented Ureter By Varying The Stent Side-Holes, Erick Martinez, Ben Xu, Jianzhi Li, Yingchen Yang Oct 2021

Numerical Study Of Fully Coupled Fluid-Structure Interaction Of Stented Ureter By Varying The Stent Side-Holes, Erick Martinez, Ben Xu, Jianzhi Li, Yingchen Yang

Mechanical Engineering Faculty Publications and Presentations

Ureteral stents are a measure used for many medical issues involving urology, such as kidney stones or kidney transplants. The purpose of applying stents is to help relieve the urine flow while the ureter is either blocked or trying to close itself, which creates blockages. These ureteral stents, while necessary, cause pain and discomfort to patients due to them being a solid that moves around inside the patients’ body. The ureter normally moves urine to the bladder through peristaltic forces. Due to the ureter being a hyperelastic material, these peristaltic forces cause the ureter to deform easily, making it necessary …


Potential Production Of Theranostic Boron Nitride Nanotubes (64cu-Bnnts) Radiolabeled By Neutron Capture, Wellington Marcos Silva, Helio Ribeiro, Jaime Taha-Tijerina Jan 2021

Potential Production Of Theranostic Boron Nitride Nanotubes (64cu-Bnnts) Radiolabeled By Neutron Capture, Wellington Marcos Silva, Helio Ribeiro, Jaime Taha-Tijerina

Manufacturing & Industrial Engineering Faculty Publications and Presentations

In this work, the radioisotope 64Cu was obtained from copper (II) chloride dihydrate in a nuclear research reactor by neutron capture, (63Cu(n, )64Cu), and incorporated into boron nitride nanotubes (BNNTs) using a solvothermal process. The produced 64Cu-BNNTs were analyzed by TEM, MEV, FTIR, XDR, XPS and gamma spectrometry, with which it was possible to observe the formation of64Cu nanoparticles, with sizes of up to 16 nm, distributed through nanotubes. The synthesized of 64Cu nanostructures showed a pure photoemission peak of 511 keV, which is characteristic of gamma radiation. This type of emission is desirable for Photon Emission Tomography (PET scan) …


Improvement Of Printing Quality For Laser-Induced Forward Transfer Based Laser-Assisted Bioprinting Process Using A Cfd-Based Numerical Model, Jie Qu, Chaoran Dou, Ben Xu, Jianzhi Li, Zhonghao Rao, Andrew Tsin Jan 2021

Improvement Of Printing Quality For Laser-Induced Forward Transfer Based Laser-Assisted Bioprinting Process Using A Cfd-Based Numerical Model, Jie Qu, Chaoran Dou, Ben Xu, Jianzhi Li, Zhonghao Rao, Andrew Tsin

Mechanical Engineering Faculty Publications and Presentations

As one of the three-dimensional (3D) bioprinting techniques with great application potential, laser-induced-forward-transfer (LIFT) based laser assisted bioprinting (LAB) transfers the bioink through a developed jet flow, and the printing quality highly depends on the stability of jet flow regime. To understand the connection between the jet flow and printing outcomes, a Computational Fluid Dynamic (CFD) model was developed for the first time to accurately describe the jet flow regime and provide a guidance for optimal printing process planning. By adopting the printing parameters recommended by the CFD model, the printing quality was greatly improved by forming stable jet regime …