Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Fundamentals Of Srcoo3 Based Oxygen-Deficient Perovskites As Cathodes For Solid Oxide Fuel Cells, Tianrang Yang Jan 2018

Fundamentals Of Srcoo3 Based Oxygen-Deficient Perovskites As Cathodes For Solid Oxide Fuel Cells, Tianrang Yang

Theses and Dissertations

The local structure and oxygen stoichiometry in oxide systems have a profound impact on oxygen electrocatalysis encountered in metal-air batteries and solid oxide fuel cells (SOFCs). However, this knowledge is often obtained under conditions different from the real working conditions of the material, resulting in misinterpretation and misunderstanding. This PhD dissertation aims to obtain the structure and oxygen stoichiometry information of a class of perovskite oxides under their real working conditions in solid oxide fuel cells. Several perovskite oxides were selected for the study: Sr0.9Y0.1CoO3- (SYC10), Sr0.9Y0.3CoO3- (SYC30), SrCo0.9Nb0.1O3- (SCN10) and SrCo0.9Ta0.1O3- (SCT10). The local crystal structure and oxygen stoichiometry …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Optimization Of Titanium Liquid/Gas Diffusion Layers In Proton Exchange Membrane Electrolyzer Cells, Stuart Mccoy Steen Dec 2015

Optimization Of Titanium Liquid/Gas Diffusion Layers In Proton Exchange Membrane Electrolyzer Cells, Stuart Mccoy Steen

Masters Theses

Polymer electrolyte membrane electrolyzer cells (PEMECs), which are reverse PEM fuel cells (PEMFCs), are effective energy storage medium by producing hydrogen/oxygen from water using electricity from renewable energy sources. This is due in part because of its efficiency, high energy density, compact design, and large capacity. In a PEMEC, a liquid/gas diffusion layer (LGDL) is located between the catalyst layer and the current distributing flow field. The LGDL is expected to transport electrons, heat, and reactants/products to and from the catalyst layer with minimum voltage, current, thermal, interfacial, and fluidic losses. Carbon materials (carbon paper or carbon cloth), typically used …


Dynamic Simulation Of Turbine Engine Used With Molten Carbonate Fuel Cell For Power Generation In The Megawatt Range, Carlos Eduardo Gutierrez Jan 2013

Dynamic Simulation Of Turbine Engine Used With Molten Carbonate Fuel Cell For Power Generation In The Megawatt Range, Carlos Eduardo Gutierrez

Browse all Theses and Dissertations

Molten carbonate fuel cells (MCFC) have a high operating temperature of approximately 650° C (1200° F) to achieve sufficient conductivity of its carbonate electrolyte. Therefore, a gas turbine engine coupled with a MCFC is desirable since the turbine engine can be used to provide hot gas to the cathode, and the cathode gas residue can be used to raise the temperature of the natural gas and water vapor mixture (fuel) before it enters the MCFC at the anode. Dynamic models of a hybrid power plant consisting of a gas turbine engine and a MCFC with their respective components were developed …


A Systems Engineering Reference Model For Fuel Cell Power Systems Development, T. L. Blanchard Jan 2011

A Systems Engineering Reference Model For Fuel Cell Power Systems Development, T. L. Blanchard

ETD Archive

This research was done because today the Fuel Cell (FC) Industry is still in its infancy in spite over one-hundred years of development has transpired. Although hundreds of fuel cell developers, globally have been spawned, in the last ten to twenty years, only a very few are left struggling with their New Product Development (NPD). The entrepreneurs of this type of disruptive technology, as a whole, do not have a systems engineering 'roadmap", or template, which could guide FC technology based power system development efforts to address a more environmentally friendly power generation. Hence their probability of achieving successful commercialization …


An Investigation Into Fuel Cells And Flow Cytometers Optimal Design, Etim Sunday Udoetok Jan 2008

An Investigation Into Fuel Cells And Flow Cytometers Optimal Design, Etim Sunday Udoetok

LSU Doctoral Dissertations

The aim of the fuel cells part of this project was to investigate the performance of Proton Exchange Membrane Fuel Cells and closely related fuel cell types like the Alkaline Fuel Cells and Phosphoric Acid Fuel Cells. The investigation involved understanding the performance of fuel cells, addressing the shortcomings of currently used designs, and finding new methods for improving the performance of fuel cells. CFD was used to study flow channels and information learned from the study was used to design a new and improved flow channel. A prototype of the new design was fabricated, tested and found to perform …


Fuel Cells, Frederick J. Munster Jr. Jan 1998

Fuel Cells, Frederick J. Munster Jr.

Maine Collection

Fuel Cells

by Frederick J. Munster Jr.

Edited by: Mr. Christopher Carroll

Maine Department of Economic Development, Augusta, Maine, 1998.

Contents: Hydrogen / Hydrogen Safety / Electrolysis / Electrolyzers / History of Fuel Cells / How Fuel Cells Operate / Fuel Cell Types / Fuel Cell Electrochemistry / Power Systems / Fuel Cells in Transportation / Hydrogen Powered Internal Combustion Engines / Home, Garden, Education and Industry / For More Information / Glossary / References