Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Numerical And Experimental Study Of Machining Process Of High Strength Lightweight Materials, Chao Zhang Dec 2021

Numerical And Experimental Study Of Machining Process Of High Strength Lightweight Materials, Chao Zhang

All Dissertations

No abstract provided.


Post-Processing And Characterization Of Additive Manufactured Carbon Fiber Reinforced Semi-Crystalline Polymers, Patricia Revolinsky Dec 2021

Post-Processing And Characterization Of Additive Manufactured Carbon Fiber Reinforced Semi-Crystalline Polymers, Patricia Revolinsky

Mechanical & Aerospace Engineering Theses & Dissertations

The aim of this work is to study the effect of post-processing on additive manufactured (AM) continuous carbon fiber reinforced plastics (CFRPs) performance. As-printed AM CFRPs do not perform as well as conventionally manufactured CFRPs with the same composition. Possible improvements to AM CFRP performance include annealing and applying uniaxial pressure with elevated temperature. Samples were subjected to pressure and temperature treatments and annealing at a constant temperature. Treated materials were subjected to three-point bending tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) to characterize and assess sample performance. Results were assessed for flexural strength, …


Design And Analysis Of One-Piece 10” Carbon Fiber Wheels For Zips Racing Zr20 Formula Sae Racecar, Patrick Kruse, Henry J. Wathen, Jordan J. Hyde, Nicholas D. Dobben, Jordan D. Blake Jan 2021

Design And Analysis Of One-Piece 10” Carbon Fiber Wheels For Zips Racing Zr20 Formula Sae Racecar, Patrick Kruse, Henry J. Wathen, Jordan J. Hyde, Nicholas D. Dobben, Jordan D. Blake

Williams Honors College, Honors Research Projects

Reducing the weight of a vehicle in racing can substantially improve the vehicle dynamics and general performance capabilities. More specifically, the reduction of the unsprung corner weight can provide noticeable performance gains in handling and responsiveness, leading to a quicker, more agile car due to a lower yawing moment of inertia. Unsprung weight reduction also improves the car’s ability to maintain contact between the tires and the road surface for a more consistent grip. In this project we identified the loads that act on the wheel rims according to the data collected from the sensors in the car’s suspension, and …