Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Analysis Of Laminated Curved Beam With And Without Defects And Imperfections, Wei-Tsen Lu Dec 2019

Analysis Of Laminated Curved Beam With And Without Defects And Imperfections, Wei-Tsen Lu

Mechanical and Aerospace Engineering Dissertations

Several studies have focused on the modeling and response characterization of composite structural members, with particular emphasis on composite curved beams. The class of curved beam is explored to determine mechanical response in primary aerospace structural applications. The present work focuses on developing analytical closed-form solutions for investigating composite curved beams with and without fiber waviness and delamination. The present work can efficiently characterize the structural behavior of composite curved beams under bending. This work shows the development of a novel mathematical approach to predict structural performance by investigating axial stiffness, bending stiffness with consideration of shear deformation in composite …


Assessment Of Material State In Composites Using Global Dielectric State Variable, Vamsee Vadlamundi Dec 2019

Assessment Of Material State In Composites Using Global Dielectric State Variable, Vamsee Vadlamundi

Mechanical and Aerospace Engineering Dissertations

Composites are heterogeneous in nature and a fundamental understanding of the material response to applied mechanical, thermal, electrical and other multi-physical fields is required to efficiently design and synthesize the material system and demands attention to long-term behavior in particular. Unlike metals, composites are designed to develop distributed damage and initiation of a single microscopic crack does not individually affect the strength/life of these materials. Therefore, the primary interest is not in single local events but in the process of interaction of multiple events that have a collective global effect on the material behavior. The interaction of these local events …


A Comparison Of Discrete Damage Modeling Methods: The Effect Of Stacking Sequence On Progressive Failure Of The Skin Laminate In A Composite Pi-Joint Subject To Pull-Off Load, Joseph Keith Novak May 2019

A Comparison Of Discrete Damage Modeling Methods: The Effect Of Stacking Sequence On Progressive Failure Of The Skin Laminate In A Composite Pi-Joint Subject To Pull-Off Load, Joseph Keith Novak

Mechanical and Aerospace Engineering Theses

Discrete damage modeling of composite failure mechanisms including delamination, matrix cracking, and their interactions was performed for the skin laminate in a composite pi-joint test specimen subject to a pull-off load. The skin laminate stacking sequence was varied, and the pull-off load and path of predicted damage were recorded. Within the study two discrete damage modeling tools were used, Abaqus XFEM with a LaRC05 built-in user subroutine and BSAM. Both tools implement failure criteria developed at the NASA Langley Research Center (LaRC) to predict the location of damage initiation and both tools use similar cohesive zone models to model damage …


Vibration-Based In-Situ Detection And Quantification Of Delamination In Composite Plates, Hanfei Mei, Asaad Migot, Mohammad Faisal Haider, Roshan Joseph, Md Yeasin Bhuiyan, Victor Giurgiutiu Apr 2019

Vibration-Based In-Situ Detection And Quantification Of Delamination In Composite Plates, Hanfei Mei, Asaad Migot, Mohammad Faisal Haider, Roshan Joseph, Md Yeasin Bhuiyan, Victor Giurgiutiu

Faculty Publications

This paper presents a new methodology for detecting and quantifying delamination in composite plates based on the high-frequency local vibration under the excitation of piezoelectric wafer active sensors. Finite-element-method-based numerical simulations and experimental measurements were performed to quantify the size, shape, and depth of the delaminations. Two composite plates with purpose-built delaminations of different sizes and depths were analyzed. In the experiments, ultrasonic C-scan was applied to visualize the simulated delaminations. In this methodology, piezoelectric wafer active sensors were used for the high-frequency excitation with a linear sine wave chirp from 1 to 500 kHz and a scanning laser Doppler …


Vibration-Based In-Situ Detection And Quantification Of Delamination In Composite Plates, Hanfei Mei, Asaad Migot, Mohammad Faisal Haider, Roshan Joseph, Md Yeasin Bhuiyan, Victor Giurgiutiu Apr 2019

Vibration-Based In-Situ Detection And Quantification Of Delamination In Composite Plates, Hanfei Mei, Asaad Migot, Mohammad Faisal Haider, Roshan Joseph, Md Yeasin Bhuiyan, Victor Giurgiutiu

Faculty Publications

This paper presents a new methodology for detecting and quantifying delamination in composite plates based on the high-frequency local vibration under the excitation of piezoelectric wafer active sensors. Finite-element-method-based numerical simulations and experimental measurements were performed to quantify the size, shape, and depth of the delaminations. Two composite plates with purpose-built delaminations of different sizes and depths were analyzed. In the experiments, ultrasonic C-scan was applied to visualize the simulated delaminations. In this methodology, piezoelectric wafer active sensors were used for the high-frequency excitation with a linear sine wave chirp from 1 to 500 kHz and a scanning laser Doppler …