Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Fiber Length Attrition In Additive Manufacturing, Michael Chapiro Jun 2016

Fiber Length Attrition In Additive Manufacturing, Michael Chapiro

Materials Engineering

Chopped carbon fibers are used as reinforcements in thermoplastics, but the viscous shear forces that arise in melt-processing reduces the fiber length well below its critical length resulting in only moderate strength and stiffness gains compared to the neat resin. This research project aimed to experimentally determine the effect of the melt–flow portion of a single-screw- extrusion process on carbon fiber length attrition in isolation from the immediately preceding screw–plastication step that is responsible for most of the heat needed for melting. Carbon fibers with an initial length of 2 mm were stirred into 5,000 centipoise and 10,000 centipoise silicone …


Finite Element Modeling Of Delamination Damage In Carbon Fiber Laminates Subject To Low-Velocity Impact And Comparison With Experimental Impact Tests Using Nondestructive Vibrothermography Evaluation, George Rodriguez Iv Jun 2016

Finite Element Modeling Of Delamination Damage In Carbon Fiber Laminates Subject To Low-Velocity Impact And Comparison With Experimental Impact Tests Using Nondestructive Vibrothermography Evaluation, George Rodriguez Iv

Master's Theses

Carbon fiber reinforced composites are utilized in many design applications where high strength, low weight, and/or high stiffness are required. While composite materials can provide high strength and stiffness-to-weight ratios, they are also more complicated to analyze due to their inhomogeneous nature. One important failure mode of composite structures is delamination. This failure mode is common when composite laminates are subject to impact loading.

Various finite element methods for analyzing delamination exist. In this research, a modeling strategy based on contact tiebreak definitions in LS-DYNA®was used. A finite element model of a low-velocity impact event was created to …


Ultra-Light Bear Canister, Naveen Beasley, Eli Rogers, Cory Wilson, Donald Wood Jun 2016

Ultra-Light Bear Canister, Naveen Beasley, Eli Rogers, Cory Wilson, Donald Wood

Mechanical Engineering

A bear canister is the primary tool used by outdoor enthusiasts to protect their food from bears while camping or backpacking. There are many effective products currently on the market, however many are not designed with reduced weight in mind. Hardcore backpackers want to have the lightest gear possible to ease the strain of carrying a large pack for sometimes weeks at a time.

Current bear canisters exist that utilize carbon fiber for weight reduction, however they rely on stock carbon tubes and lack engineering analysis, and no competitor has a fully composite bear canister available. Our sponsor, Nick Hellewell, …


Mens Doped Adhesive And Influence On Fracture Toughness, Kao Z. Yang Mar 2016

Mens Doped Adhesive And Influence On Fracture Toughness, Kao Z. Yang

FIU Electronic Theses and Dissertations

Composites are in high demand; however, fasteners are often required for joining process and can reduce their advantages. One solution is adhesive bonding, but uncertainty exists regarding long term durability and the ability to interrogate bonds noninvasively. One potential solution to qualify bond integrity over its service life is to dope an adhesive with magneto-electric nanoparticles (MENs). MENs can yield output magnetic signatures that are influenced by bond quality and damage state. In this study, adhesives have been doped with MENs prior to bonding at 1% volume concentration. For optimum implementation, this health monitoring system should be evaluated for effects …


Anisotropic Electrical Response Of Carbon Fiber Reinforced Composite Materials, Mohammad Faisal Haider Jan 2016

Anisotropic Electrical Response Of Carbon Fiber Reinforced Composite Materials, Mohammad Faisal Haider

Theses and Dissertations

Composites materials are often subjected to multi-physical conditions in different applications where, in addition to mechanical loads, they also need to sustain other types of loads such as electrical currents. The multi-physical behavior of composites needs to be understood and analyzed to facilitate new multi-functional material design. An essential first step towards this goal is to understand how multi-physics properties depend on local details (e.g. micro-structure). Composite materials have heterogeneous electrical properties (carbon/epoxy) at the local level that can be different at the global level. To conduct the multi-physics study, the electrical signal is employed to the composite sample for …