Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Engineering

Effects Of Perforations On Internal Cathodic Protection And Recruitment Of Marine Organisms To Steel Pipes, Alexander John Paluzzi Dec 2023

Effects Of Perforations On Internal Cathodic Protection And Recruitment Of Marine Organisms To Steel Pipes, Alexander John Paluzzi

Theses and Dissertations

Steel monopile support structures for offshore wind turbines require protection from corrosion on their external and internal surfaces. Cathodic protection (CP) works effectively to protect the external surfaces of monopiles, but internally, byproducts from aluminum sacrificial anode CP (SACP) and impressed current CP (ICCP) induce acidification that accelerates steel corrosion. This project investigated the effects of perforations on the performance of aluminum SACP and ICCP when used inside of steel pipes. Additionally, marine growth on the external and internal surfaces of the pipes was assessed to determine if CP byproducts affect marine organism development.

Two sealed and two perforated steel …


Analysis Of Ternary Chloride Salt Corrosion In High Nickel Alloys, Dimitri Madden, Gowtham Mohan May 2023

Analysis Of Ternary Chloride Salt Corrosion In High Nickel Alloys, Dimitri Madden, Gowtham Mohan

Mechanical Engineering ETDs

The United States Department of Energy seeks to improve the efficiency of concentrating solar power technologies by employing thermal energy storage with operating temperatures above 700°C. To meet these goals, the National Solar Thermal Test Facility at Sandia National Laboratories has considered the use of a ternary molten chloride salt for sensible heat storage systems. While favored for low cost, good heat transfer properties, and stability at high temperature, ternary chloride salt also exhibits high corrosive attack. Components of a chloride salt storage system would include piping, valves, tanks, pumps, receivers, and heat exchangers, which would be exposed to high …


Investigation Of Oxidation And Corrosion Resistance Of Ni-Based Alloys And Stainless Steels Under Co2 Environments At Elevated Temperatures, Spencer Roy Fultineer Jan 2023

Investigation Of Oxidation And Corrosion Resistance Of Ni-Based Alloys And Stainless Steels Under Co2 Environments At Elevated Temperatures, Spencer Roy Fultineer

Graduate Theses, Dissertations, and Problem Reports

High mechanical strength integrity, high robustness towards oxidation, and high resistance to carburization under CO2 environments at elevated temperatures are usually required for metallic systems that are employed for power generation. INCONEL 625 is a nickel-based superalloy that started development in the 1950s. This material was designed with the distinct purpose of use in high-temperature and high-pressure systems. While various materials possess the physical properties to handle these conditions, the creation of IN625 addresses the need for a material to withstand the highly corrosive properties of these kinds of environments. In order to evaluate the oxidation and corrosion resistance of …


Ng-Torque/Tension Testing Of Bolts With Epoxy Primer, Gabrielle Van Brunt May 2022

Ng-Torque/Tension Testing Of Bolts With Epoxy Primer, Gabrielle Van Brunt

Undergraduate Honors Capstone Projects

This capstone project is in conjunction with Northrop Grumman (NG). The goal of the project is for NG to apply an epoxy in the future to aerospace structures that they produce. This epoxy is meant to prevent corrosion of threaded joints in the structures. Although NG has the epoxy and has no issues procuring it, NG does not know the properties of the epoxy; it cannot be used until the epoxy’s nut factor is experimentally determined. The epoxy nut factor will be used for design and drawing purposes on various projects. To determine the nut factor, the Aggiepoxy team created …


Evaluation Of Accelerated Testing Methods To Predict The Effects Of Chemical Exposure On Mechanical Properties Of Polyester Composites In Municipal Wastewater Service, Roberto A. Garcia May 2022

Evaluation Of Accelerated Testing Methods To Predict The Effects Of Chemical Exposure On Mechanical Properties Of Polyester Composites In Municipal Wastewater Service, Roberto A. Garcia

Theses and Dissertations

Composite Access Products (CAP) is a company that is determined to replace traditional steel manhole covers with fiber reinforced polymer alternatives that have similar performance while also introducing several advantages. CAP can achieve this by manufacturing the polymer manhole covers using high-speed, high pressure compressing molding to produce lightweight, long-lasting, corrosive resistant covers. CAP’s composite covers have been approved for use by TXDOT in roadway zones. Despite this, they must now undergo more testing and verification for use in environments with highly corrosive elements such as sewage environments and waste processing plants. In these situations, the polymer manhole covers will …


Corrosion Performance Of Additively Manufactured Alloys And Hot Corrosion, Ali Hemmasian Ettefagh Jan 2021

Corrosion Performance Of Additively Manufactured Alloys And Hot Corrosion, Ali Hemmasian Ettefagh

LSU Doctoral Dissertations

Additive manufacturing (AM) has gained attention in recent years due to its unique properties in the fabrication of complex parts. Same as any other new topics, in some areas, there is still a lack of enough knowledge and there is the need for further investigations to enable the applications of AM parts widely in industries. ‎Chapter 2, and ‎Chapter 5 to ‎Chapter 8 of this report are focused on the corrosion properties of the parts and coatings fabricated using the laser powder bed fusion based AM method or laser surface processing method, including a comprehensive review. Laser powder bed fusion …


Rust Preventative Spray Varnish Verification And Nozzle Development, Dakota Snyder, Collin Whitely, Stephen Patrick, William Mccullough Jan 2021

Rust Preventative Spray Varnish Verification And Nozzle Development, Dakota Snyder, Collin Whitely, Stephen Patrick, William Mccullough

Williams Honors College, Honors Research Projects

This document details the research and selection of five rust preventative spray varnishes that were to be tested. These varnishes are known as the five materials. The materials underwent rust testing and in-depth analysis to see which protects against rust the best. In addition, the document reports on the construction of a prototype self-contained, automated spray varnishing unit.


Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates Aug 2020

Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates

Electronic Theses and Dissertations

As the interest and implementation of renewable energy accelerates, so does that of grid energy storage. It is widely believed that a cost-effective energy storage technology will bring about the proliferation of renewable energy. Redox flow battery (RFB) technology represents a promising solution to cost-effective grid energy storage. Compared to other technologies, RFBs have a long lifetime, high efficiency, are non-flammable, significantly reduce cost, and separately scale power and energy. The separation of power and energy enables increased energy capacity by simply adding electrolyte volume. Of the challenges facing RFB technology, one readily apparent is the cost of the active …


Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath Dec 2018

Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath

Electronic Theses and Dissertations

Laser-powder bed fusion (L-PBF) is an additive manufacturing technique for fabricating metal components with complex design and customized features. However, only a limited number of materials have been widely studied using L-PBF. AISI 420 stainless steel, an alloy with a useful combination of high strength, hardness, and corrosion resistance, is an example of one such material where few L-PBF investigations have emerged to date. In this dissertation, L-PBF experiments were conducted using 420 stainless steel powders to understand the effects of chemical composition, particle size distribution and processing parameters on ensuing physical, mechanical and corrosion properties and microstructure in comparison …


Material-Process-Property Relationships Of 17-4 Stainless Steel Fabricated By Laser-Powder Bed Fusion Followed By Hot Isostatic Pressing., Harish Irrinki Aug 2018

Material-Process-Property Relationships Of 17-4 Stainless Steel Fabricated By Laser-Powder Bed Fusion Followed By Hot Isostatic Pressing., Harish Irrinki

Electronic Theses and Dissertations

17-4 PH stainless steel is commonly used in medical, tooling, automotive, chemical and aerospace industries due to its excellent strength and corrosion properties. Additive manufacturing processes such as laser-powder bed fusion (L-PBF) have gained attention and importance due to the potential to produce complex-shaped three-dimensional parts for various industries. In order to manufacture three-dimensional components from 17-4 PH stainless steel powder using L-PBF, it is critical for design and manufacturing engineers to have an awareness of various material options and corresponding processing and post-processing conditions to obtain useful mechanical properties from the process. The goal of this dissertation is to …


Determination Of Chemical Notch, KChem On Aluminum And Steel When Subjected Under Slow Strain Rate Test In Corrosive Environment, Joshua Teo Lee Kuok Apr 2018

Determination Of Chemical Notch, KChem On Aluminum And Steel When Subjected Under Slow Strain Rate Test In Corrosive Environment, Joshua Teo Lee Kuok

Masters Theses

When designing for any mechanical components or system, the question would arise as to how the material would react to the loads subjected on it? Would the component survive its service load? How would it react to environmental corrosion? To answer these questions, the technique used in this thesis paper is the Slow Strain Rate Test (SSRT) method. Aluminum and steel were chosen as the material to be tested in this paper. Al 7075-T651, and Al 6061-T651 was chosen due to its wide range of application, high strength to weight ratio and ease of machinability. It is highly used in …


Toward A Production Ready Fbj Process For Joining Dissimilar Combinations Of Gadp 1180 Steel And Aa 7085-T76, Kevin Alexander Shirley Mar 2018

Toward A Production Ready Fbj Process For Joining Dissimilar Combinations Of Gadp 1180 Steel And Aa 7085-T76, Kevin Alexander Shirley

Theses and Dissertations

Friction Bit Joining (FBJ) is a new technology that can be used to join dissimilar materials together. This ability makes it a good candidate for creating light weight structures for the automotive industry by combining lightweight materials such as aluminum to stronger materials like advanced high-strength steels. The automotive industry and many other industries have great interest in reducing structure weight to increase fuel efficiency. The purpose of this research is to make FBJ of GADP 1180 to AA 7085-T76 a production ready process by (1) better understanding the effects of process parameters, bit design and tool design on joint …


Design And Validation Of Novel Potential High Entropy Alloys, Boliang Zhang Jan 2017

Design And Validation Of Novel Potential High Entropy Alloys, Boliang Zhang

LSU Doctoral Dissertations

The design approach and validation of single phase senary refractory high entropy alloys (HEAs) MoNbTaTiVW and HfNbTaTiVZr were presented in first part of this dissertation. The design approach was to combine phase diagram inspection of available binary and ternary systems and Calculation of Phase Diagrams (CALPHAD) prediction. Experiments using X-ray diffraction and scanning electron microscopy techniques verified single phase microstructure in body centered cubic lattice for both alloys. The observed elemental segregation agrees well with the solidification prediction using Scheil model. The lattice constant, density and microhardness were measured to be 0.3216 nm, 4.954 GPa and 11.70 g/cm3 for …


Microstructure, Wetting Angle And Corrosion Of Aluminum-Silicon Alloys, Shvetashva Suri Dec 2016

Microstructure, Wetting Angle And Corrosion Of Aluminum-Silicon Alloys, Shvetashva Suri

Theses and Dissertations

In this study the effect of composition, surface roughness and water droplet size on contact angle and corrosion properties of cast Aluminum-Silicon alloys containing Si from 5% to 50% have been examined. The water contact angle was measured on a given sample using a goniometer. In addition, the effect of surface roughness and droplet size on contact angle has been measured for alloys at a fixed composition. The microstructures can be found in this report with sizes of primary and eutectic Silicon as well as inter-particle spacing between Silicon. Contact angle measurements are accompanied with a photographic validation of the …


A Study Of The Mechanical Behavior Of Composite Materials Exposed To Corrosive Environments, Ryan Keith Hedgepeth Jan 2016

A Study Of The Mechanical Behavior Of Composite Materials Exposed To Corrosive Environments, Ryan Keith Hedgepeth

Electronic Theses and Dissertations

A collaborative study was conducted to examine the degradation of commercially pultruded uni-directional e-glass composites. The case study specimens, including a variety of commercially pultruded polyester/e-glass and vinylester/e-glass composites were exposed to corrosive environments, namely: distilled water (h2o), bleach (naclo), and hydrochloric acid (hcl) for a minimum of 60 days, and the degradation was analyzed. Such a study was chosen on two accounts, 1) to contribute viable data to industry and research and 2) to provide data to be used to develop a standardized practice to characterize the durability for pultruded composites used for structural applications. A control group was …


Optimization Of Titanium Liquid/Gas Diffusion Layers In Proton Exchange Membrane Electrolyzer Cells, Stuart Mccoy Steen Dec 2015

Optimization Of Titanium Liquid/Gas Diffusion Layers In Proton Exchange Membrane Electrolyzer Cells, Stuart Mccoy Steen

Masters Theses

Polymer electrolyte membrane electrolyzer cells (PEMECs), which are reverse PEM fuel cells (PEMFCs), are effective energy storage medium by producing hydrogen/oxygen from water using electricity from renewable energy sources. This is due in part because of its efficiency, high energy density, compact design, and large capacity. In a PEMEC, a liquid/gas diffusion layer (LGDL) is located between the catalyst layer and the current distributing flow field. The LGDL is expected to transport electrons, heat, and reactants/products to and from the catalyst layer with minimum voltage, current, thermal, interfacial, and fluidic losses. Carbon materials (carbon paper or carbon cloth), typically used …


Swelling-Etching Characterization Of Copper (I) Oxide - Pdms For The Development Of Micro/Nano - Particles Composite Mems Corrosion Sensor, Abdoul Kader Maiga Jul 2015

Swelling-Etching Characterization Of Copper (I) Oxide - Pdms For The Development Of Micro/Nano - Particles Composite Mems Corrosion Sensor, Abdoul Kader Maiga

Graduate Theses and Dissertations

The primary objective for this thesis is to contribute to the understanding of the oxide removal process for a corrosion sensing device. The goal for designing such a device is for monitoring corrosion on metallic structures. The sensing material (6.35mm x 1mm discs) of the device is composed of copper (I) oxide particles mixed in some polydimethylsiloxane (PDMS). The PDMS, “housing,” is meant for controlling the oxidation rate through the sensing material. A solvent was used to facilitate the etchant diffusion through the PDMS matrix. Toluene and acetic acid were the ideal solvent and etchant, respectively, for carrying out the …


Surface Modification Of Aluminum Alloys By Plasma Electrolytic Oxidation, Vahid Dehnavi Aug 2014

Surface Modification Of Aluminum Alloys By Plasma Electrolytic Oxidation, Vahid Dehnavi

Electronic Thesis and Dissertation Repository

Plasma Electrolytic Oxidation (PEO) is a surface treatment for the production of ceramic oxide coatings with great properties, such as high wear and corrosion resistance, on metal substrates, particularly aluminum and magnesium alloys. Formation of PEO coatings involves complex processes and mechanisms that are difficult to study. Currently, the PEO process is in a transition phase from research to commercial application, with a primary focus on the corrosion and wear protection of light alloys, and has recently generated interest as a promising surface treatment for biomedical applications.

To justify the industrial application of PEO, a more systematic and in-depth study …


Corrosion Assessment And Enhanced Biocompatibility Analysis Of Biodegradable Magnesium-Based Alloys, Luis Enrique Pompa May 2014

Corrosion Assessment And Enhanced Biocompatibility Analysis Of Biodegradable Magnesium-Based Alloys, Luis Enrique Pompa

Theses and Dissertations - UTB/UTPA

Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and …


Influence Of Surface Modification On Corrosion And Biocompatibility Of Titanium Alloys, Zia Ur Rahman May 2014

Influence Of Surface Modification On Corrosion And Biocompatibility Of Titanium Alloys, Zia Ur Rahman

Theses and Dissertations - UTB/UTPA

Titanium alloys enhance the quality and longevity of human life by replacing or treating various parts of the body. However, the aggressive body fluids lead to corrosion and metal ions dissolution. These ions leach to the adjacent tissues and causes adverse reactions. Surface modifications improve corrosion resistance and biological activity. In this investigation, electropolishing, magnetoelectropolishing, titanium coating and hydroxyapatite coating were carried out on commercially pure titanium (CPTi), Ti6Al4V and Ti6Al4V-ELI (Extra Low Interstitials). These surface modifications are known to affect surface chemistry, morphology, wettability, corrosion resistance and biocompatibility of these materials. In vitro cyclic potentiodynamic polarization tests were conducted …


Fabrication And Enhancement Of Aluminum-Based Microchannel Devices, Paul Joseph Hymel Jan 2014

Fabrication And Enhancement Of Aluminum-Based Microchannel Devices, Paul Joseph Hymel

LSU Master's Theses

Microscale molding replication and transient liquid phase (TLP) bonding were used to fabricate Al-based microchannel heat exchangers (MHEs) and micro gas chromatograph (mGC) columns. Metal-based microchannel heat exchangers often experience corrosion as a result of their operating conditions. To address this problem, an internal anodization method was developed in Al microtubes by pulsing the flow of electrolyte through a microtube when the current dropped below a set value. The anodic aluminum oxide (AAO) films were characterized by scanning electron microscopy (SEM), focused ion beam (FIB) cross sections, and X-ray energy dispersive spectroscopy (EDS) to determine their growth rate and morphology. …


A Study On The Cleaning And Modification Of Metal Surfaces By Direct Current Cathodic Electrolytic Plasma Process, Jiandong Liang Jan 2013

A Study On The Cleaning And Modification Of Metal Surfaces By Direct Current Cathodic Electrolytic Plasma Process, Jiandong Liang

LSU Doctoral Dissertations

The processes of surface treatments or surface modifications, more formally known as surface engineering, tailor the surfaces of engineering materials. The treatments are usually intended to change physical properties such as thermal or electrical conductivity, modify the surface dimensions, i.e. roughness, etc. A novel surface treatment method, Electrolytic Plasma Process (EPP), was developed for coating purposes, in its early developmental stage. In this work, the major effort is to avoid using any environmental hazardous chemical (coatings) and to extend such its application to some new fields. The general response of the substrate material under electrolytic plasma process was summarized including …


Mitigation Of Chloride And Sulfate Based Corrosion In Reinforced Concrete Via Electrokinetic Nanoparticle Treatment, Kunal Kupwade-Patil Jul 2010

Mitigation Of Chloride And Sulfate Based Corrosion In Reinforced Concrete Via Electrokinetic Nanoparticle Treatment, Kunal Kupwade-Patil

Doctoral Dissertations

Concrete is a porous material which is susceptible to the migration of highly deleterious species such as chlorides and sulfates. Various external sources, including sea salt spray, direct seawater wetting, deicing salts and chlorides can contaminate reinforced concrete. Chlorides diffuse into the capillary pores of concrete and come into contact with the reinforcement. When chloride concentration at the reinforcement exceeds a threshold level it breaks down the passive oxide layer, leading to chloride induced corrosion. The application of electrokinetics using positively charged nanoparticles for corrosion protection in reinforced concrete structures is an emerging technology. This technique involves the principle of …


Elimination Of Deck Joints Using A Corrosion Resistant Frp Approach, Ashok Reddy Aleti Jul 2010

Elimination Of Deck Joints Using A Corrosion Resistant Frp Approach, Ashok Reddy Aleti

Doctoral Dissertations

The research presented herein describes the development of durable link slabs for jointless bridge decks based on using FRP grid for reinforcement. Specifically, the ductility of the FRP material was utilized to accommodate bridge deck deformations imposed by girder deflection, temperature variations, and concrete shrinkage. It would also provide a solution to a number of deterioration problems associated with bridge deck joints.

The design concept of the link slabs was then examined to form the basis of design for FRP grid link slabs. Improved design of FRP grid link slab/concrete deck slab interface was confirmed in the numerical analysis. The …


Corrosion-Related Gas Measurements And Analysis For A Suite Of Coals In Staged Pulverized Coal Combustion, Todd A. Reeder Jun 2010

Corrosion-Related Gas Measurements And Analysis For A Suite Of Coals In Staged Pulverized Coal Combustion, Todd A. Reeder

Theses and Dissertations

Eleven gas species, including CO, CO2, H2, H2O, H2S, HCl, NOX, O2, SO2, COS and SO3, were measured in a 150 kWth, staged, pulverized coal, down-fired combustor using a Fourier transform infrared (FTIR) spectrometer, gas chromatograph (GC), and a Horiba PG-250 5-gas analyzer. Additional gases such as HCN, NH3, CH4, and other hydrocarbons were also measured. Seven coals of varying rank and composition were investigated. Measurements were obtained in reducing (S.R. = 0.85) and oxidizing (S.R. = 1.15) conditions. In particular, sulfur- and chlorine-containing species including H2S, SO2, COS, SO3, and HCl are discussed. In the reducing zone, all four …


Oxidation Modeling By Means Of Molecular Dynamics, Chaiyod Soontrapa Jan 2009

Oxidation Modeling By Means Of Molecular Dynamics, Chaiyod Soontrapa

UNLV Theses, Dissertations, Professional Papers, and Capstones

Oxidation modeling is normally engineered to study systems at macroscopic scales, mostly in analytical forms based on diffusion theories. The associated time scale is usually in months, days, or minutes, and the length scale is in the order of microns. In this dissertation, oxidation modeling is performed at atomistic scale with the time and length scales in picoseconds and angstroms, respectively, using molecular dynamics. Molecular dynamics simulations generate trajectories of each atom or particle in a system according to the laws of physics. Studying oxidations under the atomistic point of view can offer new insights on atomic behaviors and influencing …


Fatigue Fracture And Microstructural Analysis Of Friction Stir Welded Butt Joints Of Aerospace Aluminum Alloys, Vinay Raghuram Jan 2009

Fatigue Fracture And Microstructural Analysis Of Friction Stir Welded Butt Joints Of Aerospace Aluminum Alloys, Vinay Raghuram

LSU Master's Theses

Friction-Stir-Welding (FSW) has been adopted as a major process for welding Aluminum aerospace structures. Al-2195, which is one of the new-generation Aluminum alloys that has been used on the external tank of the new super lightweight external tank of the space shuttle. The Lockheed Martin Space Systems (LMSS), Michoud Operations in New Orleans is continuously pursuing Friction-Stir-Welding technologies in its efforts to advance fabrication of the external tanks of the space shuttle. The future launch vehicles which will have to be reusable, m, an dates the structure to have good fatigue properties, which prompts an investigation into the fatigue behavior …


An Analysis Of Microstructure And Corrosion Resistance In Underwater Friction Stir Welded 304l Stainless Steel, Tad Dee Clark Jun 2005

An Analysis Of Microstructure And Corrosion Resistance In Underwater Friction Stir Welded 304l Stainless Steel, Tad Dee Clark

Theses and Dissertations

An effective procedure and parameter window was developed for underwater friction stir welding (UWFSW) 304L stainless steel with a PCBN tool. UWFSW produced statistically significant: increases in yield strengths, decreases in percent elongation. The ultimate tensile strength was found to be significantly higher at certain parameters. Although sigma was identified in the UWFSWs, a significant reduction of sigma was found in UWFSWs compared to ambient FSWs. The degree of sensitization in UWFSWs was evaluated using double loop EPR testing and oxalic acid electro-etched metallography. Results were compared to base metal, ambient FSW, and arc welds. Upper and lower sensitization localization …


Effects Of Friction Stir Processing On The Microstructure And Mechanical Properties Of Fusion Welded 304l Stainless Steel, Colin J. Sterling Jun 2004

Effects Of Friction Stir Processing On The Microstructure And Mechanical Properties Of Fusion Welded 304l Stainless Steel, Colin J. Sterling

Theses and Dissertations

Friction stir processing (FSP) has been utilized to locally process regions of arc weldments in 304L stainless steel to improve the microstructure and mechanical performance. The cast microstructure and coarse delta-ferrite has been replaced with a fine-grained wrought microstructure. Furthermore, twins were introduced throughout the friction stir processed region. Although sub-surface sigma and carbides were introduced during FSP, their presence is not expected to adversely affect the resulting mechanical or corrosion properties of friction stir processed 304L arc welds. The resulting mechanical properties of FS processed weldments were also an improvement over as-welded arc welds. FSP resulted in an increase …