Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Assembly Of Ceramic Particles In Aqueous Suspensions Induced By High-Frequency Ac Electric Field, James E. John Iv Dec 2022

Assembly Of Ceramic Particles In Aqueous Suspensions Induced By High-Frequency Ac Electric Field, James E. John Iv

Mechanical & Aerospace Engineering Theses & Dissertations

Ceramic materials processed using colloidal methods have been the focus of a great deal of research aimed at tailoring the final structure and microstructure of the finished ceramic sample. To this end, various external field effects have been investigated to modify the suspension microstructure without manipulating the ceramic particles directly. In a previous work in the field of ice templating it has been shown that AC electric fields are able to produce microstructural changes in ice templated ceramics that have significantly improved the final mechanical properties. However, the mechanisms for this process are still not well understood in ceramics.

To …


Numerical Simulation Of Electroosmotic Flow Of Viscoelastic Fluid In Microchannel, Jianyu Ji Dec 2022

Numerical Simulation Of Electroosmotic Flow Of Viscoelastic Fluid In Microchannel, Jianyu Ji

Mechanical & Aerospace Engineering Theses & Dissertations

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which often involve the use of viscoelastic non-Newtonian fluids. Due to the existence of the elastic effect, the viscoelastic EOF develops into chaotic flow under extremely low Reynolds numbers, which is known as elastic turbulence. The mechanism of elastic turbulence in electroosmotic flow remains unclear. Numerical simulation plays an important role in understanding the mechanisms of elastic turbulence. This dissertation is aimed to study the EOF of viscoelastic fluids in constriction microchannels under various direct current (DC) and alternating current (AC) electric fields. First, the EOF …


The Effect Of Soft Tissue And Bone Morphology On The Stresses In The Foot And Ankle, Jinhyuk Kim Aug 2022

The Effect Of Soft Tissue And Bone Morphology On The Stresses In The Foot And Ankle, Jinhyuk Kim

Mechanical & Aerospace Engineering Theses & Dissertations

The foot and ankle interface with the ground, thus they absorb reaction forces and initiate load distribution through the body. The plantar fascia (PF) is a flexible structure that absorbs reaction forces and distributes loading across the foot. It is frequently a source of foot pain especially when people have plantar fasciitis and/or diabetes mellitus. Finite element (FE) models of the foot and ankle were created to examine the function however, the plantar fascia is frequently modeled as a 1D tension only spring, which does not represent variations caused by injury and/or disease.

As models move toward being patient specific, …


Collaborative Robotics Strategies For Handling Non-Repetitive Micro-Drilling Tasks Characterized By Low Structural Mechanical Impedance, Xiangyu Wang Aug 2022

Collaborative Robotics Strategies For Handling Non-Repetitive Micro-Drilling Tasks Characterized By Low Structural Mechanical Impedance, Xiangyu Wang

Mechanical & Aerospace Engineering Theses & Dissertations

Mechanical micro-drilling finds widespread use in diverse applications ranging from advanced manufacturing to medical surgery. This dissertation aims to develop techniques that allow programming of robots to perform effective micro-drilling tasks. Accomplishing this goal is faced with several challenges. Micro-drills suffer from frequent breakage caused from variations in drill process parameters. Micro-drilling tasks afford extremely low feed rates and almost zero tolerance for any feed rate variations. The accompanying robot programming task is made difficult as mathematical models that capture the micro-drilling process complexities and sensitive variations in micro-drill parameters are highly difficult to obtain. Therefore, an experimental approach is …


A Comparison Of Uniaxial Compressive Response And Inelastic Deformation Mechanisms In Freeze Cast Alumina-Epoxy Composites Without And With Rigid Confinement, Tareq Aljuhari Aug 2022

A Comparison Of Uniaxial Compressive Response And Inelastic Deformation Mechanisms In Freeze Cast Alumina-Epoxy Composites Without And With Rigid Confinement, Tareq Aljuhari

Mechanical & Aerospace Engineering Theses & Dissertations

Cellular ceramics have an array of improved mechanical properties that make them incredibly desired for different applications such as armor systems, aircraft structures, automobiles bumpers, and biomedical implants. It is also desirable that porous architecture could be shaped into bulk complicated shapes and easy to scale-up with low manufacturing cost. Despite several efficient techniques to fabricate cellular ceramics, some limitations are preventing us from meeting the high demand of the after mentioned applications. For that, freeze casting, also called ice-templating, is technique of solidifying an aqueous ceramic suspension under the effect of unidirectional temperature gradient. In this study, Ice-templated porous …


Role Of Structural Hierarchy In Multiscale Material Systems, Siavash Sattar Aug 2022

Role Of Structural Hierarchy In Multiscale Material Systems, Siavash Sattar

Mechanical & Aerospace Engineering Theses & Dissertations

Multiscale material systems derive their effective mechanical properties through a hierarchical organization of their structural elements and components. The hierarchy of a material is related to its effective properties, material processing, and composition. The hierarchy can be defined as an identifiable structural component with a specific size scale, such as the individual fibers collimated into platelets arranged randomly and producing a complex composite system or the lamellar structure in freeze-casted ceramic with the variation of in-plane orientation. In this study, the role of the structural hierarchy on the effective mechanical response and failure behavior of three complex material systems was …


Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci May 2022

Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci

Mechanical & Aerospace Engineering Theses & Dissertations

Current analysis of manufacturing defects in the production of rims and tires via x-ray inspection at an industry partner’s manufacturing plant requires that a quality control specialist visually inspect radiographic images for defects of varying sizes. For each sample, twelve radiographs are taken within 35 seconds. Some defects are very small in size and difficult to see (e.g., pinholes) whereas others are large and easily identifiable. Implementing this quality control practice across all products in its human-effort driven state is not feasible given the time constraint present for analysis.

This study aims to identify and develop an object detector capable …


A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis May 2022

A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis

Mechanical & Aerospace Engineering Theses & Dissertations

Achieving higher Mach numbers for private and commercial flight is a growing interest in the aerospace community. To qualify vehicles prior to flight, tests must be run in wind tunnels. Asymmetric wind tunnel nozzles are of continuing interest to the aerospace community due to their ability to change throat geometry, allowing for a range of Mach numbers to be achieved that encompasses all of the supersonic regime. The sliding block wind tunnel at Old Dominion University (ODU) is designed for a range of Mach numbers from about 1.8 to 3.5 but is limited to an upper limit of 2.8 by …


Development Of Modeling And Simulation Platform For Path-Planning And Control Of Autonomous Underwater Vehicles In Three-Dimensional Spaces, Sai Krishna Abhiram Kondapalli May 2022

Development Of Modeling And Simulation Platform For Path-Planning And Control Of Autonomous Underwater Vehicles In Three-Dimensional Spaces, Sai Krishna Abhiram Kondapalli

Mechanical & Aerospace Engineering Theses & Dissertations

Autonomous underwater vehicles (AUVs) operating in deep sea and littoral environments have diverse applications including marine biology exploration, ocean environment monitoring, search for plane crash sites, inspection of ship-hulls and pipelines, underwater oil rig maintenance, border patrol, etc. Achieving autonomy in underwater vehicles relies on a tight integration between modules of sensing, navigation, decision-making, path-planning, trajectory tracking, and low-level control. This system integration task benefits from testing the related algorithms and techniques in a simulated environment before implementation in a physical test bed. This thesis reports on the development of a modeling and simulation platform that supports the design and …


Mechanics Of Preimpregnated Fiber Tow Deposition And Compaction, Virginia Meredith Rauch May 2022

Mechanics Of Preimpregnated Fiber Tow Deposition And Compaction, Virginia Meredith Rauch

Mechanical & Aerospace Engineering Theses & Dissertations

In additive manufacturing, such as Automated Fiber Placement (AFP), defects often develop during the deposition and compaction of preimpregnated composite material, which reduce the strength of the resultant material. It is necessary to reduce defects and have good adhesion between plies to optimize the laminate performance and reduce delamination between composite layers. The aim of this work is to study the adhesion and deformation of preimpregnated (prepreg) composite material during the deposition and compaction stage in the composite forming process and how material parameters can be used to increase laminate strength. Two types of experimentation were performed on thermoset IM7/8552 …


Electromagnetic Modeling Of A Wind Tunnel Magnetic Suspension And Balance System, Desiree Driver May 2022

Electromagnetic Modeling Of A Wind Tunnel Magnetic Suspension And Balance System, Desiree Driver

Mechanical & Aerospace Engineering Theses & Dissertations

Wind tunnels are used to study forces and moments acting on an aerodynamic body. While most results involve some interference from the mechanical supports used to hold the model, a Magnetic Suspension and Balance System (MSBS) is void of these interferences and presents an ideal test scenario. To further investigate the feasibility of dynamic stability testing at supersonic speeds using a MSBS, a preliminary design idea is currently being developed using an existing MSBS in a subsonic wind tunnel. This review focuses on the development of a mathematical model to more accurately portray the capabilities of the 6 inch Massachusetts …


Failure Mode, Effects And Criticality Analysis Of A Very Low Earth Orbit Cubesat Mission, Robb Christopher Borowicz May 2022

Failure Mode, Effects And Criticality Analysis Of A Very Low Earth Orbit Cubesat Mission, Robb Christopher Borowicz

Mechanical & Aerospace Engineering Theses & Dissertations

When space programs launch vehicles into orbit, multiple failures could arise throughout the mission and corrective actions are often not an option. Applying reliability engineering approaches during the design phase focuses on analyzing risk by anticipating potential failures and mitigating uncertainties in the design. Old Dominion University, in partnership with the U.S. Coast Guard Academy, and the U.S. Air Force Institute of Technology designed and developed a 3U CubeSat mission to validate on-orbit, three space technology payloads. Mission SeaLion will fly as a secondary payload on stage two of Northrop Grumman’s Antares rocket and will be deployed in a very …