Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 386

Full-Text Articles in Engineering

Directional Dependent Fracture Characteristics Of 3d Printed Mechanical Metamaterials, Thomas Draper Jan 2024

Directional Dependent Fracture Characteristics Of 3d Printed Mechanical Metamaterials, Thomas Draper

Dissertations, Master's Theses and Master's Reports

Structural metamaterials, such as lattice metamaterials, are engineered cellular structures designed to achieve properties not achievable by natural materials. They enable mechanical properties unattainable by homogeneous solid materials and offer optimal properties for these materials tunable for specific applications in industries such as automotive, medical, and aerospace. Recent findings have revealed unique tunable mechanical properties such as negative Poisson's ratio, high strength-to-weight ratio, anisotropic stiffness, and much more. While the elastic and wave propogation properties of many lattice metamaterials are well investigated, the fracture properties are not well explored. However, their low fracture toughness is a bottleneck for their use …


High Temperature Strength Reduces Soldering In Aluminum High Pressure Die Casting, Jacob A. Belke Jan 2024

High Temperature Strength Reduces Soldering In Aluminum High Pressure Die Casting, Jacob A. Belke

Dissertations, Master's Theses and Master's Reports

Die soldering, an adhesion defect in high pressure die casting (HPDC), is a symptom of localized sticking where a localized portion of the cast material is adhered to the tooling surface causing build up over time. This requires the tooling to be serviced which incurs additional costs to the process that gets passed on to the parts. Historically, soldering has been mitigated using lubricants, coatings, and alloy chemistry modifications but solder persists.

The Tresca friction thermomechanical model suggests soldering occurs when the local interfacial shear stress between the casting and die surface exceeds the local shear strength of the casting. …


An Elasto-Plastic Constitutive Model With Phase-Field Fracture For Additively Manufactured Metallic Materials, Nolan Ruble Jan 2024

An Elasto-Plastic Constitutive Model With Phase-Field Fracture For Additively Manufactured Metallic Materials, Nolan Ruble

Dissertations, Master's Theses and Master's Reports

The advent of additive manufacturing (AM), commonly known as 3D printing, has revolutionized the production of metallic components across various industries. This technology, which builds objects layer by layer, has shifted paradigms in manufacturing, allowing for unprecedented design freedom, material efficiency, and rapid prototyping. Metal additive manufacturing, in particular, has shown remarkable promise due to its ability to produce complex geometries that are difficult or impossible to achieve with traditional subtractive methods. In addition, additively manufactured (AM) materials are gaining popularity in thanks to their often superior and controllable properties in comparison to their wrought counterparts. In the present work, …


Study Of Nanoparticle Dispersed Phase Change Materials And The Impact Of Temperature Gradient On The Potential For Particle Migration, Udit Sharma Jan 2024

Study Of Nanoparticle Dispersed Phase Change Materials And The Impact Of Temperature Gradient On The Potential For Particle Migration, Udit Sharma

Dissertations, Master's Theses and Master's Reports

Supercooling in phase change materials (PCMs) and the associated challenges in enhancing thermal conductivity through nanoparticle dispersion prompted this investigation. Existing literature exhibits inconsistencies in thermal conductivity improvements, suggesting a potential correlation with nanoparticle migration induced by thermophoresis. To address this, a novel temperature-dependent scaling parameter, \(\xi\), was introduced to predict particle migration propensity. A strong association was observed between higher \(\xi\) values and diminished thermal conductivity enhancements, indicating a significant influence of nanoparticle movement on heat transfer.

To further elucidate this relationship, a Nanoparticle Interaction Parameter \(N_\text{{pl}}\) was developed, incorporating critical fluid properties and interfacial effects. The derived critical …


Analysis Of Factors Affecting Engine Knock In Modern Spark Ignition Gasoline Engines To Improve Engine Efficiency, Siddharth Gopujkar Jan 2024

Analysis Of Factors Affecting Engine Knock In Modern Spark Ignition Gasoline Engines To Improve Engine Efficiency, Siddharth Gopujkar

Dissertations, Master's Theses and Master's Reports

Spark ignition engine knock is an issue that has persisted for over a century. Knock prevents the spark in an SI engine to be deployed at the most optimum time in the engine cycle, which leads to a decrease in the efficiency of the engine. A reduction in the efficiency directly translates to increased emissions and fuel costs. This research looks at experimental works to analyze the impact of three separate factors on knock in an effort to minimize it and improve engine efficiency.

The first factor is fuel chemistry – how Research Octane Number (RON) and Motor Octane Number …


Phase Field Modeling Of Fracture And Phase Separation Using Numerical Methods And Machine Learning, Revanth Mattey Jan 2024

Phase Field Modeling Of Fracture And Phase Separation Using Numerical Methods And Machine Learning, Revanth Mattey

Dissertations, Master's Theses and Master's Reports

Phase field modeling is a crucial tool in scientific and engineering disciplines due to its ability to simulate complex phenomena like phase transitions, interface dynamics, and pattern formation. It plays a vital role in understanding material behavior during processes such as solidification, phase separation, and fracture mechanics. Particularly in fracture mechanics, phase field modeling can be utilized to predict the crack path in complex materials. Understanding the failure behavior is vital for applications of any material. The specific contributions to the field of phase field fracture mechanics, are, Firstly, we propose a novel phase field fracture model to simulate the …


Nonlinear Hydrodynamic Modeling And Control Of Wave Energy Converters, Tania Demonte Gonzalez Jan 2024

Nonlinear Hydrodynamic Modeling And Control Of Wave Energy Converters, Tania Demonte Gonzalez

Dissertations, Master's Theses and Master's Reports

The growing urgency to transition towards carbon-neutral energy sources has sparked significant interest in diversifying energy portfolios by incorporating renewable energies, including the untapped potential of wave energy. This dissertation sets its objectives in advancing wave energy converter (WEC) technologies by focusing on developing and validating a nonlinear modeling technique and designing control strategies to maximize energy extraction and enhance WEC efficiency. At the heart of this research is the derivation and validation of an algebraic nonlinear Froude-Krylov forces model. Building on this foundational model, a robust nonlinear sliding mode controller and a nonlinear model predictive controller are designed to …


Investigation Of Operational Parameter Differences Between The Standard Ron Test Method And Knock-Limited Modern Spark-Ignition Engine Operation, Alexander Hoth Jan 2024

Investigation Of Operational Parameter Differences Between The Standard Ron Test Method And Knock-Limited Modern Spark-Ignition Engine Operation, Alexander Hoth

Dissertations, Master's Theses and Master's Reports

Octane numbers (ONs) are used worldwide to rate the knock propensity of gasoline-like fuels for spark-ignition engines, making ONs the leading indicator of fuel quality for commercial distribution. The ONs were established 90 years ago and have only received minor changes compared to significant advancements in modern engine operation and fuel composition. This has resulted in discrepancies between knock-limited modern engine operation and standard ON ratings. This dissertation used a standard CFR octane rating engine at Argonne National Laboratory that was instrumented with modern combustion research tools to investigate key differences between the Research Octane Number (RON) rating conditions and …


Data Driven And Machine Learning Based Modeling And Predictive Control Of Combustion At Reactivity Controlled Compression Ignition Engines, Behrouz Khoshbakht Irdmousa Jan 2024

Data Driven And Machine Learning Based Modeling And Predictive Control Of Combustion At Reactivity Controlled Compression Ignition Engines, Behrouz Khoshbakht Irdmousa

Dissertations, Master's Theses and Master's Reports

Reactivity Controlled Compression Ignition (RCCI) engines operates has capacity to provide higher thermal efficiency, lower particular matter (PM), and lower oxides of nitrogen (NOx) emissions compared to conventional diesel combustion (CDC) operation. Achieving these benefits is difficult since real-time optimal control of RCCI engines is challenging during transient operation. To overcome these challenges, data-driven machine learning based control-oriented models are developed in this study. These models are developed based on Linear Parameter-Varying (LPV) modeling approach and input-output based Kernelized Canonical Correlation Analysis (KCCA) approach. The developed dynamic models are used to predict combustion timing (CA50), indicated mean effective pressure (IMEP), …


A Physical Test Artifact For Evaluating Edge Cases Of Individual And Fused Automated Driving Perception Sensors, Colin Schaefer Jan 2024

A Physical Test Artifact For Evaluating Edge Cases Of Individual And Fused Automated Driving Perception Sensors, Colin Schaefer

Dissertations, Master's Theses and Master's Reports

With the advent of technologies to support autonomous vehicles (AVs), the number of different AV models from a variety of companies and organizations has proliferated. With this increase in options comes the need to physically evaluate their perception systems. However, there is a lack of standard methods to physically evaluate these perception systems. A set of test artifacts can be used to compare the performances of perception systems, but the artifacts must be usable with different types of perception sensors and various sensor fusion systems. This thesis presents the development of an artifact that injects edge case scenarios into the …


Design, Testing And Neural Network Modeling Of A Low-Friction Wave Energy Converter Testbed, Vasu Bhardwaj Jan 2024

Design, Testing And Neural Network Modeling Of A Low-Friction Wave Energy Converter Testbed, Vasu Bhardwaj

Dissertations, Master's Theses and Master's Reports

Point absorber wave energy converters (WECs) transform water wave kinetic energy into other useful forms, typically electrical. While it’s possible to extract energy from passive WECs, more energy can be captured using active control where its power take-off (PTO) acts as both a generator and an actuator. Control strategies usually require accurate models often obtained during model-scale testing. Unfortunately, friction can dominate the dynamic response in small WEC models. A frictionless point absorber WEC testbed is described in this report which allows the researcher to focus on fundamental hydrodynamic behavior instead of friction. It uses air bearings for vertical motion …


Wave Energy Converter Wave Force Prediction Using A Neural Network, Morgan Kline Jan 2024

Wave Energy Converter Wave Force Prediction Using A Neural Network, Morgan Kline

Dissertations, Master's Theses and Master's Reports

Due to the unpredictable nature of large bodies of water, wave energy can be a difficult renewable resource to rely on. One way to make Wave Energy Converters (WECs) more efficient is to apply a control strategy. In many control solutions, it is assumed that the wave excitation force is known into the future. In many instances, especially with complex waveforms, this is simply not the case. Simulation studies have shown the promise of wave force prediction using neural networks. This study demonstrates this experimentally and aims to characterize the important factors when designing such a network. Several wave elevation …


Dynamic Mode Decomposition Approach For Estimating The Shape Of A Cable, Yash Manik Chavan Jan 2023

Dynamic Mode Decomposition Approach For Estimating The Shape Of A Cable, Yash Manik Chavan

Dissertations, Master's Theses and Master's Reports

This study investigates the dynamic behavior of a flexible cable with heterogeneous stiffness using a data-driven approach. The study aims to develop accurate models describing intricate structures with rigid or flexible components. To achieve this, reflective markers were attached to the cable at equal spacing, and the motion was manually excited and captured using an 8-camera setup and OptiTrack's Motive software.

The cable displacement data at the marker locations were used as initial conditions for various Dynamic Mode Decomposition (DMD) models. The performance of the data- driven cable model is compared against the performance of the DMD modeling approach, fitting …


An Experimentally Validated Computational Model For The Degradation And Fracture Of Magnesium-Based Implants In A Chemically Corrosive Environment, Mark M. Ousdigian Jan 2023

An Experimentally Validated Computational Model For The Degradation And Fracture Of Magnesium-Based Implants In A Chemically Corrosive Environment, Mark M. Ousdigian

Dissertations, Master's Theses and Master's Reports

In the orthopedic and cardiovascular fields there is a growing interest for biodegradable implants, which can be naturally degraded in the body environment over time so that no extraction surgery is required. These implants must be designed to maintain their strength until the fracture has healed in the body, which could be influenced by many factors such as -the patient’s age, activities, body weight, pre-existing conditions etc. Hence, an ideal implant design should be done on a patient-by-patient basis. In the present work, a computational model is developed to predict the degradation and fracture of magnesium-based implants in a stress-coupled …


Alternative Method For Low Frequency Impact Sound Measurement For Building Field Tests, Sunit Girdhar Jan 2023

Alternative Method For Low Frequency Impact Sound Measurement For Building Field Tests, Sunit Girdhar

Dissertations, Master's Theses and Master's Reports

What do high heels, dog nails, and dragging furniture have in common? They are all frequent sources of noise pollution and annoyance in multi-story buildings. Building codes exist to control and mitigate such noise, but these codes are outdated and fail to protect the residents against noise annoyance. Footstep noise is still the number one cause of complaints among the residents. The impact performance of floor-ceiling assemblies is characterized using a single-number rating called the Impact Sound Rating (ISR). A standard tapping machine is used in pre-defined locations on the floor and the radiated Sound Pressure Level (SPL) is measured …


Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad Jan 2023

Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad

Dissertations, Master's Theses and Master's Reports

There is an increase in demand for new lightweight structural materials in the aerospace industry for more efficient and affordable human space travel. Polymer matrix composites (PMCs) with reinforcement material as carbon nanotubes (CNTs) have shown exceptional increase in the mechanical properties. Flattened carbon nanotubes (flCNTs) are a primary component of many carbon nanotube (CNT) yarn and sheet materials, which are promising reinforcements for the next generation of ultra-strong composites for aerospace applications. These flCNT/polymer materials are subjected to extreme pressure and temperature during curing process. Therefore there is a need to investigate the evolution of properties during the curing …


Capturing Microstructural Heterogeneity And Predicting Local Transport Phenomena In Pemfc Catalyst Layers: A Comprehensive Network Modeling Approach, Shahriar Alam Jan 2023

Capturing Microstructural Heterogeneity And Predicting Local Transport Phenomena In Pemfc Catalyst Layers: A Comprehensive Network Modeling Approach, Shahriar Alam

Dissertations, Master's Theses and Master's Reports

A unique network architecture that captures the microstructural heterogeneity and predicts the local transport properties of PEMFC catalyst layers is proposed. Separate networks containing numerous cylindrical elements and nodes are generated that represent the solid and pore phase of the catalyst layer. Transport resistances are assigned to the elements while the nodes are volumeless. The networks are interlinked through nodes where local properties are stored. The generated computational grid's macroscopic behaviors (percolation behavior, gas diffusivity, and ion conductivity) will be matched against the experimental data for validation. Diffusion-like transport equations are applied to the networks that provide local water balance, …


On The Gaussian-Core Vortex Lattice Model For The Analysis Of Wind Farm Flow Dynamics, Apurva Baruah Jan 2023

On The Gaussian-Core Vortex Lattice Model For The Analysis Of Wind Farm Flow Dynamics, Apurva Baruah

Dissertations, Master's Theses and Master's Reports

Wind power science has seen tremendous development and growth over the last 40 years. Advancements in design, manufacturing, installation, and operation of wind turbines have enabled the commercial deployment of wind power generation systems. These have been due, in a large part, to the expertise in the simulation and modeling of individual wind turbines. The new generation of wind energy systems calls for a need to accurately predict and model the entire wind farm, and not just individual turbines. The commercial deployment of these wind farms depends on model's ability to accurately capture the different physics involved, each at its …


An Active Voice Coil Negative Stiffness Vibration Isolator With Application To Mobile 3d Printing, Lucas M. Schloemp Jan 2023

An Active Voice Coil Negative Stiffness Vibration Isolator With Application To Mobile 3d Printing, Lucas M. Schloemp

Dissertations, Master's Theses and Master's Reports

Equipment whose performance degrades when exposed to base vibration is often deployed in vibration-rich environments. Using 3D printers in mobile applications, such as vehicles and ships, are typical examples where the extruder and bedplate are easily excited by base vibration. A versatile active vibration isolator is considered in this thesis constructed using a voice coil actuator and a laser displacement feedback sensor to achieve a wide range of dynamic response characteristics, including negative stiffness. This approach permits transmissibility shaping to meet band-limited base isolation requirements without active damping vibration control. A combination of simulation and hardware validation is used to …


Programming The Bistable Dynamic Vibration Absorbers Of A 1d-Metastructure For Adaptive Broadband Vibration Absorption, Shantanu H. Chavan Jan 2023

Programming The Bistable Dynamic Vibration Absorbers Of A 1d-Metastructure For Adaptive Broadband Vibration Absorption, Shantanu H. Chavan

Dissertations, Master's Theses and Master's Reports

This research addresses a critical challenge in structural engineering—achieving comprehensive vibration control and energy dissipation in meta-structures. Departing from the limitations of passive structures with fixed bandgaps, we propose an innovative approach utilizing active meta-structures capable of dynamically tuning their bandgaps. The primary goal is to introduce an efficient method for programming meta-structures with multiple variable bandgaps, thereby enabling effective vibration attenuation across a broad frequency spectrum.

The methodology involves transforming passive resonators into bistable adaptable Dynamic Vibration Regulators (DVRs) through a sophisticated switching mechanism. This adaptation sets the stage for numerous unique combinations by independently switching each resonator. A …


Correlation Of And Development Of Procedure To Use A Resonant Plate With Mechanical Excitation For Shock Testing Small-To-Medium Size Spacecraft And Provide Aerospace Shock Analysis And Testing Guidelines, Monty Kennedy Jan 2023

Correlation Of And Development Of Procedure To Use A Resonant Plate With Mechanical Excitation For Shock Testing Small-To-Medium Size Spacecraft And Provide Aerospace Shock Analysis And Testing Guidelines, Monty Kennedy

Dissertations, Master's Theses and Master's Reports

In the aerospace industry it is known that performing shock analysis and testing on spacecraft is difficult to do mostly because shock loads create a very short duration shock wave transient that can have high acceleration peak levels (1,000-5,000 g) and wide frequency content (100-10,000 Hz). FE (finite-element) shock analysis is difficult because implicit linear FE software commonly used for most vibration analysis in aerospace does not account for shock wave propagation, reflection, and attenuation that occurs based upon the distance from the shock source at the base of the spacecraft and the attenuations that occurs through mechanical joints. Spacecraft …


Development And Testing Of A Low Mass Vibratory Lunar Compactor, Charles Carey Jan 2023

Development And Testing Of A Low Mass Vibratory Lunar Compactor, Charles Carey

Dissertations, Master's Theses and Master's Reports

NASA and other agencies are working to return to the moon, with the Artemis Program [1]. As a part of this new effort, an emphasis is being placed on having a sustained presence, building lunar bases and other permanent structures. The development of such infrastructure will require the development of civil engineering structures, and site preparation becomes a necessity. The Planetary Surface Technology Development Laboratory is developing a low mass lunar compactor as part of an autonomous site preparation vehicle in partnership with Colorado School of Mines, funded by NASA’s 2021 Lunar Surface Technology Research grant. The low mass lunar …


Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane Jan 2023

Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane

Dissertations, Master's Theses and Master's Reports

Polymer matrix composite materials are widely used as structural materials in aerospace and aeronautical vehicles. Resin/reinforcement wetting and the effect of polymerization on the thermo-mechanical properties of the resin are key parameters in the manufacturing of aerospace composite materials. Determining the contact angle between combinations of liquid resin and reinforcement surfaces is a common method for quantifying wettability. It is challenging to determine contact angle values experimentally of high-performance resins on CNT materials such as CNT, graphene, bundles or yarns, and BNNT surfaces. It is also experimentally difficult to determine the effect of polymerization reaction on material properties of a …


Wireless Power Transfer In Autonomous Mobile Microgrids, Carl Greene Jan 2022

Wireless Power Transfer In Autonomous Mobile Microgrids, Carl Greene

Dissertations, Master's Theses and Master's Reports

The ability to autonomously dock unmanned ground vehicles plays a key role in mobile micro-grids, where efficient power transfer is paramount. The approach utilized in this work allows for near-field wireless power transfer in remote locations with minimal support. Establishing a micro-grid power system connection autonomously using wireless power eliminates the arduous task of designing a complex, multiple degrees of freedom (MDOF) robotic arm. The work presented in this thesis focuses on both the hardware and software within the micro-grid system. This particular near-field wireless system consists of a primary and secondary set of modules, comprised of Litz wire coils, …


Passivity-Based Numerical Modeling And Grid Integration Strategies For Wave Energy Converter Arrays, Salman Husain Jan 2022

Passivity-Based Numerical Modeling And Grid Integration Strategies For Wave Energy Converter Arrays, Salman Husain

Dissertations, Master's Theses and Master's Reports

The body of work presented here develops numerical time-domain models of Wave Energy Converter (WEC) arrays or wave farms. It will be shown here that a cluster of WECs can be more effective in extracting oceanic energy, can facilitate deployment logistics, and help with grid integration. The objectives of this work are: (i) developing a theoretical metric to evaluate the energy extraction potential of a WEC array, (ii) developing an algorithm that ensures the stability of the time-domain models of WEC arrays, and (iii) identifying strategies that facilitate grid integration and power management of a WEC array. In the process …


An Experimental Study Of Fuel Selection For A Gasoline Multi-Mode, Spark Ignited – Compression Ignition Engine, Zachary J. Stanchina Jan 2022

An Experimental Study Of Fuel Selection For A Gasoline Multi-Mode, Spark Ignited – Compression Ignition Engine, Zachary J. Stanchina

Dissertations, Master's Theses and Master's Reports

In this study of fuels of different reactivities and their performance in a low-temperature combustion (LTC) engine. The engine was a 2.2L CRDI engine code D4HB provided by industry partner Hyundai America Technical Center inc. (HATCI). The engine was instrumented with in-cylinder pressure sensors allowing for monitoring of the combustion process.

First, the engine was operated with standard US pump grade gasoline, Research Octane number (RON) 91 E10, to find initial operation conditions as well as control points of stable operation for daily checks on system conditions.

Tested were 8 different fuel blends, the four base blends were provided by …


Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian Jan 2022

Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian

Dissertations, Master's Theses and Master's Reports

Composite materials require a multi-scale approach to fully understand its behavior. At the micro level, material behavior analysis is conducted most often using numerical or analytical approaches. These models, however, require validation from experimental data to ensure material predictions are accurate. This study compares a semi-analytical micromechanical analysis tool, MAC/GMC, to experimental results of in-situ microscale transverse compression testing conducted at AFRL facilities. Effective properties, stress-strain curves, stress and strain fields, and damage predictions are compared with experimental outputs. Both generalized method of cells (GMC) and high-fidelity generalized method of cells (HFGMC) theories implemented within MAC/GMC show results that agree …


Development And Validation Of A Force Measuring Device For A Laboratory Wave Tank, Jacob K. Colling Jan 2022

Development And Validation Of A Force Measuring Device For A Laboratory Wave Tank, Jacob K. Colling

Dissertations, Master's Theses and Master's Reports

The ability to predict the hydrodynamic force exerted on floating bodies plays a critical role in creating more effective control strategies for wave energy converters (WECs). Developing a test apparatus capable of directly measuring the forces exerted on a floating body subjected to a wavefield provides the means to validate theoretical prediction methods with experimental results and to develop data-based prediction methods for hydrodynamic forces. This report will discuss the development and validation of a device that measures the total vertical force exerted on a test artifact. The device requirements and design are discussed to examine the factors taken into …


Development Of Advanced Models For Pre-Ignition Prediction In Gas Engines And Analytical Model For Wallfilm Evaporation, Ankith Ullal Jan 2022

Development Of Advanced Models For Pre-Ignition Prediction In Gas Engines And Analytical Model For Wallfilm Evaporation, Ankith Ullal

Dissertations, Master's Theses and Master's Reports

Ever-changing regulations aimed at improving efficiency and reducing harmful emissions have resulted in many power-generation device (engine) manufacturers to adopt new strategies. Computer simulation of these new strategies of power generation requires more accurate and higher fidelity modelling tools. In the present study, two such models are developed. The first model deals with pre-ignition phenomena driven by lubricant (lube) oil in natural gas engines and the second model is relevant to prediction of wallfilm evaporation by employing analytical solutions to transport governing equations for boundary layers.

Pre-ignition in engines has been the subject of current research with the advent of …


Optimal Control Of Nonlinear Wave Energy Converters In Heave For Maximum Power Extraction, Kevin Nelson Jan 2022

Optimal Control Of Nonlinear Wave Energy Converters In Heave For Maximum Power Extraction, Kevin Nelson

Dissertations, Master's Theses and Master's Reports

The marine renewable energy community is interested in maximizing the power generated by nonlinear wave energy converters. Optimal control methods provide a tool to achieve this aim and can also help to inform the buoy design. An energy-optimal control law for a class of non-linear buoy models is derived and is shown to be singular. The solution approach is illustrated using an hourglass-shaped buoy having a cubic, hydrostatic nonlinearity. The optimal control law is only valid on singular arcs, and a method to search for these arcs is presented. Two singular arcs are found for the hourglass buoy model and …