Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Benchmarking Of A Sco2 Heat Exchanger Flow Loop, David Velasco Apr 2024

Benchmarking Of A Sco2 Heat Exchanger Flow Loop, David Velasco

Doctoral Dissertations and Master's Theses

Heat transfer of supercritical carbon dioxide (sCO2) was studied experimentally by commissioning a sCO2 flow loop featuring a horizontal tube-in-tube counterflow heat exchanger with a circular cross section. The main objective was to establish experimental heat transfer research capabilities for sCO2 at Embry-Riddle Aeronautical University’s (ERAU) Thermal Science Lab. sCO2 experiences a drastic change in thermophysical properties near its critical point that results in unique heat transfer characteristics. The high pressures at which sCO2 exists make the large gradients in thermophysical and transport properties difficult to study, experimentally and numerically. However, understanding the heat transfer characteristics and thermophysical behavior of …


Atmospheric Carbon Capture: A Review On Current Technologies And Analysis Of Energy Consumption For Various Direct Air Capture (Dac) Systems, Jennifer Perskin May 2023

Atmospheric Carbon Capture: A Review On Current Technologies And Analysis Of Energy Consumption For Various Direct Air Capture (Dac) Systems, Jennifer Perskin

Doctoral Dissertations and Master's Theses

Carbon dioxide (CO2) capture is a crucial approach to reducing greenhouse gases in the atmosphere to directly combat climate change. Major components of the technology to desublimate CO2 at cryogenic temperatures are mature and have the potential to be applied to build large Arctic/Antarctic direct-air CO2 capture plants. Pressure swing adsorption another gas separation technique used in industry today that can be modified for atmospheric carbon capture. The discussion of energy consumption for cryogenic and combined direct air capture systems is explored in this study. The investigation of precompression of atmospheric air for a direct-air capture …


Thermal Removal Of Carbon Dioxide From The Atmosphere: Energy Requirements And Scaling Issues, Ted Von Hippel Aug 2019

Thermal Removal Of Carbon Dioxide From The Atmosphere: Energy Requirements And Scaling Issues, Ted Von Hippel

Ted von Hippel

I conduct a systems-level study of direct air capture of CO2 using techniques from thermal physics. This system relies on a combination of an efficient heat exchanger, radiative cooling, and refrigeration, all at industrial scale and operated in environments at low ambient temperatures. While technological developments will be required for such a system to operate efficiently, those developments rest on a long history of refrigeration expertise and technology, and they can be developed and tested at modest scale. I estimate that the energy required to remove CO2 via this approach is comparable to direct air capture by other techniques. The …


Thermal Removal Of Carbon Dioxide From The Atmosphere: Energy Requirements And Scaling Issues, Ted Von Hippel May 2018

Thermal Removal Of Carbon Dioxide From The Atmosphere: Energy Requirements And Scaling Issues, Ted Von Hippel

Publications

I conduct a systems-level study of direct air capture of CO2 using techniques from thermal physics. This system relies on a combination of an efficient heat exchanger, radiative cooling, and refrigeration, all at industrial scale and operated in environments at low ambient temperatures. While technological developments will be required for such a system to operate efficiently, those developments rest on a long history of refrigeration expertise and technology, and they can be developed and tested at modest scale. I estimate that the energy required to remove CO2 via this approach is comparable to direct air capture by other techniques. The …


Thermoeconomic Optimization Of Cascade Refrigeration System Using Mixed Carbon Dioxide And Hydrocarbons At Low Temperature Circuit, Nasruddin Nasruddin, Arnas Arnas, Ahmad Faqih, Niccolo Giannetti Dec 2016

Thermoeconomic Optimization Of Cascade Refrigeration System Using Mixed Carbon Dioxide And Hydrocarbons At Low Temperature Circuit, Nasruddin Nasruddin, Arnas Arnas, Ahmad Faqih, Niccolo Giannetti

Makara Journal of Technology

Many applications and industrial processes require very low cooling temperature, such as cold storage in the biomedical field, requiring temperature below -80 °C. However, single-cycle refrigeration systems can only achieve the effective cooling temperature of -40 °C and, also, the performance of the cycle will decrease drastically for cooling temperatures lower than -35°C. Currently, most of cascade refrigeration systems use refrigerants that have ozone depletion potential (ODP) and global warming potential (GWP), therefore, in this study, a cascade system is simulated using a mixture of environmentally friendly refrigerants, namely, carbon dioxide and a hydrocarbon (propane, ethane or ethylene) as the …


Real-Time Monitoring Of Personal Exposures To Carbon Dioxide, Elliott T. Gall, Toby Cheung, Irvan Luhung, Stefano Schiavon, William W. Nazaroff Jan 2016

Real-Time Monitoring Of Personal Exposures To Carbon Dioxide, Elliott T. Gall, Toby Cheung, Irvan Luhung, Stefano Schiavon, William W. Nazaroff

Mechanical and Materials Engineering Faculty Publications and Presentations

Elevated indoor CO2 levels are indicative of insufficient ventilation in occupied spaces and correlate with elevated concentrations of pollutants of indoor origin. Adverse health and well-being outcomes associated with elevated indoor CO2 levels are based on CO2 as a proxy, although some emerging evidence suggests CO2 itself may impact human cognition. Using portable monitors, we conducted an exposure study with 16 subjects in Singapore to understand the levels, dynamics and influencing factors of personal exposure to CO2. Participants carried a CO2 monitor continuously for 7-day periods recording their exposure levels at 1-min intervals. …


Direct Synthesis Of Methane From Co2-H2O Co-Electrolysis In Tubular Solid Oxide Electrolysis Cells, Long Chen, Fanglin Chen, Changrong Xia Mar 2015

Direct Synthesis Of Methane From Co2-H2O Co-Electrolysis In Tubular Solid Oxide Electrolysis Cells, Long Chen, Fanglin Chen, Changrong Xia

Fanglin Chen

Directly converting CO2 to hydrocarbons offers a potential route for carbon-neutral energy technologies. Here we report a novel design, integrating the high-temperature CO2–H2O co-electrolysis and low-temperature Fischer–Tropsch synthesis in a single tubular unit, for the direct synthesis of methane from CO2 with a substantial yield of 11.84%.


Electrochemical Capture Of Co2 From Natural Gas Using A High-Temperature Ceramic-Carbonate Membrane, Jingjing Tong, Lingling Zhan, Jie Fang, Minfang Han, Kevin Huang Jan 2015

Electrochemical Capture Of Co2 From Natural Gas Using A High-Temperature Ceramic-Carbonate Membrane, Jingjing Tong, Lingling Zhan, Jie Fang, Minfang Han, Kevin Huang

Faculty Publications

This study reports the first investigation of using a ceramic-carbonate dual-phase membrane to electrochemically separate CO2 from a simulated natural gas. The CO2 permeation flux density was systematically studied as a function of temperature, CO2 partial pressure and time. As expected, the flux density was observed to increase with temperature and CO2 partial pressure. Long-term stability test showed that flux density experienced an initial performance-improving “break-in” period followed by a slow decay. Post-test microstructural analysis suggested that a gradual loss of carbonate during the test could be the cause of the flux-time behavior observed.


Direct Synthesis Of Methane From Co2-H2O Co-Electrolysis In Tubular Solid Oxide Electrolysis Cells, Long Chen, Fanglin Chen, Changrong Xia Dec 2014

Direct Synthesis Of Methane From Co2-H2O Co-Electrolysis In Tubular Solid Oxide Electrolysis Cells, Long Chen, Fanglin Chen, Changrong Xia

Faculty Publications

Directly converting CO2 to hydrocarbons offers a potential route for carbon-neutral energy technologies. Here we report a novel design, integrating the high-temperature CO2–H2O co-electrolysis and low-temperature Fischer–Tropsch synthesis in a single tubular unit, for the direct synthesis of methane from CO2 with a substantial yield of 11.84%.


Corrosion Mechanism Of Copper In Palm Biodiesel Feb 2013

Corrosion Mechanism Of Copper In Palm Biodiesel

A.S. Md Abdul Haseeb

Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu2O, CuO, Cu(OH)2 and CuCO3. Dissolved O2, H2O, CO2 and RCOO- radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel. © 2012 Elsevier Ltd.


Dual-Pump Dual-Broadband Coherent Anti-Stokes Raman Scattering In Reacting Flows, Sukesh Roy, Terrence R. Meyer, Robert P. Lucht, Mikael Afzelius, Per-Erik Bengtsson, James R. Gord Jul 2004

Dual-Pump Dual-Broadband Coherent Anti-Stokes Raman Scattering In Reacting Flows, Sukesh Roy, Terrence R. Meyer, Robert P. Lucht, Mikael Afzelius, Per-Erik Bengtsson, James R. Gord

Terrence R Meyer

A dual-pump, dual-broadband coherent anti-Stokes Raman scattering system for simultaneous measurements of temperature and concentrations of N2, O2, and CO2 in reacting f lows is demonstrated. In this system pure rotational transitions of N2 O2 and rovibrational transitions of N2 CO2 are probed simultaneously with two narrowband pump beams, a broadband pump beam, and a broadband Stokes beam. The main advantage of this technique is that it permits accurate temperature measurements at both low and high temperatures as well as concentration measurements of three molecules.


The Development Of A Method To Extract High Purity Oxygen From The Martian Atmosphere, Dongchuan Wu Jul 1994

The Development Of A Method To Extract High Purity Oxygen From The Martian Atmosphere, Dongchuan Wu

Mechanical & Aerospace Engineering Theses & Dissertations

A glow-discharge in an ambient Mars atmosphere (total pressure of 5 torr, composed of 95% carbon dioxide) results in the dissociation of carbon dioxide molecules into carbon monoxide and oxygen. If the glow-discharge zone is maintained adjacent and close to a silver membrane, operated at temperatures above 400°C, atomic and molecular oxygen, produced by the glow-discharge, can be separated from the other species by atomic diffusion through the membrane to an ultrahigh vacuum region where the desorbed O2 is then collected. Experiments have been conducted to study the behavior of the glow discharge in both molecular oxygen and carbon …