Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

A Nanofiber-Embedded Microfluidic Platform For Studying Neurobiology, Donghee Lee, Navatha Shree Sharma, S. M. Shatil Shahriar, Kai Yang, Zheng Yan, Jingwei Xie Oct 2022

A Nanofiber-Embedded Microfluidic Platform For Studying Neurobiology, Donghee Lee, Navatha Shree Sharma, S. M. Shatil Shahriar, Kai Yang, Zheng Yan, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Due to their biomimetic properties, electrospun nanofibers have been widely used in neurobiology studies. However, mechanistic understanding of cell-nanofiber interactions is challenging based on the current in vitro culture systems due to the lack of control of spatiotemporal patterning of cells and difficulty in monitoring single cell behavior. To overcome these issues, we apply microfluidic technology in combination with electrospun nanofibers for in vitro studies of interactions between neurons and nanofiber materials. We demonstrate a unique nanofiber embedded microfluidic device which contains patterned aligned or random electrospun nanofibers as a new culture system. With this device, we test how different …


Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


The Study Of 3d Micro-Fluid Printing In Aqueous Two-Phase System, Mian Huang Jan 2022

The Study Of 3d Micro-Fluid Printing In Aqueous Two-Phase System, Mian Huang

Dissertations and Theses

Aqueous two-phase system (ATPS) is a technology that allows phase separation in an aqueous environment. This technology can be used for the separation, extraction and purification of a variety of biomolecules and thus gained great attention in industry and academia. This thesis is a combination of ATPS, 3D printing, and microfluidics technologies and realizes the printing of biocompatible aqueous structures in another aqueous matrix. The objectives of this thesis include 1) customizing a regular thermal extrusion 3D printer for printing 3D aqueous structures, 2) printing 3D aqueous structure in an aqueous matrix, and 3) studying the stability of the printed …