Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Multiphase Flows With Digital And Traditional Microfluidics, Michael Andrew Nilsson May 2013

Multiphase Flows With Digital And Traditional Microfluidics, Michael Andrew Nilsson

Open Access Dissertations

Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both.

In order to make an effective droplet-based digital microfluidic device, one must be able to precisely …


Development Of A Pdms Based Micro Total Analysis System For Rapid Biomolecule Detection, Balaji Srinivasan Venkatesh May 2013

Development Of A Pdms Based Micro Total Analysis System For Rapid Biomolecule Detection, Balaji Srinivasan Venkatesh

Graduate Theses and Dissertations

The emerging field of micro total analysis system powered by microfluidics is expected to revolutionize miniaturization and automation for point-of-care-testing systems which require quick, efficient and reproducible results. In the present study, a PDMS based micro total analysis system has been developed for rapid, multi-purpose, impedance based detection of biomolecules. The major components of the micro total analysis system include a micropump, micromixer, magnetic separator and interdigitated electrodes for impedance detection. Three designs of pneumatically actuated PDMS based micropumps were fabricated and tested. Based on the performance test results, one of the micropumps was selected for integration. The experimental results …


Magnetic Manipulation Of Particles And Cells In Ferrofluid Flow Through Straight Microchannels Using Two Magnets, Jian Zeng May 2013

Magnetic Manipulation Of Particles And Cells In Ferrofluid Flow Through Straight Microchannels Using Two Magnets, Jian Zeng

All Theses

Microfluidic devices have been increasingly used in the past two decades for particle and cell manipulations in many chemical and biomedical applications. A variety of force fields have been demonstrated to control particle and cell transport in these devices including electric, magnetic, acoustic, and optical forces etc. Among these particle handling techniques, the magnetic approach provides clear advantages over others such as low cost, noninvasive, and free of fluid heating issues. However, the current knowledge of magnetic control of particle transport is still very limited, especially lacking is the handling of diamagnetic particle. This thesis is focused on the magnetic …


Electrohydrodynamic Manipulation Of Liquid Droplet Emulsions In A Microfluidic Channel, Jonathan Wehking Jan 2013

Electrohydrodynamic Manipulation Of Liquid Droplet Emulsions In A Microfluidic Channel, Jonathan Wehking

Electronic Theses and Dissertations

This work specifically aims to provide a fundamental framework, with some experimental validation, for understanding droplet emulsion dynamics in a microfluidic channel with an applied electric field. Electrification of fluids can result in several different modes of electrohydrodynamics (EHD). Several studies to date have provided theoretical, experimental, and numerical results for stationary droplet deformations and some flowing droplet configurations, but none have reported a method by which droplets of different diameters can be separated, binned and routed through the use of electric fields. It is therefore the goal of this work to fill that void and report a comprehensive understanding …


Electrokinetic Mixing And Separation In Microfluidic Systems, Fang Yang Jan 2013

Electrokinetic Mixing And Separation In Microfluidic Systems, Fang Yang

Theses and Dissertations

Electrokinetics involves the study of liquid or particle motion under the action of an electric field; it includes electroosmosis, electrophoresis, dielectrophoresis, and electrowetting, etc. The applications of electrokinetics in the development of microfluidic devices have been widely attractive in the past decade. Electrokinetic devices generally require no external mechanical moving parts and can be made portable by replacing the power supply by small battery. Therefore, electrokinetic based microfluidic systems can serve as a viable tool in creating a lab-on-a-chip (LOC) for use in biological and chemical assays. Here we present our works of electrokenitic based mixing and separation in microfluidics …


An Acoustic-Based Microfluidic Platform For Active Separation And Mixing, Myeong Chan Jo Jan 2013

An Acoustic-Based Microfluidic Platform For Active Separation And Mixing, Myeong Chan Jo

USF Tampa Graduate Theses and Dissertations

Particle separation is of great interest to many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In addition, current gold standard active separation techniques are only capable of separation based on particle size; hence, separation cannot be achieved for same-size …