Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers Sep 2022

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers Sep 2022

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Processing Time, Temperature, And Initial Chemical Composition Prediction From Materials Microstructure By Deep Network For Multiple Inputs And Fused Data, Amir Abbas Kazemzadeh Farizhandi, Mahmood Mamivand Jul 2022

Processing Time, Temperature, And Initial Chemical Composition Prediction From Materials Microstructure By Deep Network For Multiple Inputs And Fused Data, Amir Abbas Kazemzadeh Farizhandi, Mahmood Mamivand

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Prediction of the chemical composition and processing history from microstructure morphology can help in material inverse design. In this work, we propose a fused-data deep learning framework that can predict the processing history of a microstructure. We used the Fe-Cr-Co alloys as a model material. The developed framework is able to predict the heat treatment time, temperature, and initial chemical compositions by reading the morphology of Fe distribution and its concentration. The results show that the trained deep neural network has the highest accuracy for chemistry and then time and temperature. We identified two scenarios for inaccurate predictions; 1) There …


Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang May 2022

Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang

Michigan Tech Publications

The Laurentian Great Lakes, one of the world’s largest surface freshwater systems, pose a modeling challenge in seasonal forecast and climate projection. While physics-based hydrodynamic modeling is a fundamental approach, improving the forecast accuracy remains critical. In recent years, machine learning (ML) has quickly emerged in geoscience applications, but its application to the Great Lakes hydrodynamic prediction is still in its early stages. This work is the first one to explore a deep learning approach to predicting spatiotemporal distributions of the lake surface temperature (LST) in the Great Lakes. Our study shows that the Long Short-Term Memory (LSTM) neural network, …


A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin Mar 2022

A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin

Engineering Faculty Articles and Research

Automatic extraction of filler morphology (size, orientation, and spatial distribution) in Scanning Electron Microscopic (SEM) images is essential in many applications such as automatic quality inspection in composite manufacturing. Extraction of filler morphology greatly depends on accurate segmentation of fillers (fibers and particles), which is a challenging task due to the overlap of fibers and particles and their obscure presence in SEM images. Convolution Neural Networks (CNNs) have been shown to be very effective at object recognition in digital images. This paper proposes an automatic filler detection system in SEM images, utilizing a Mask Region-based CNN architecture. The proposed system …


Towards Real-Time Reinforcement Learning Control Of A Wave Energy Converter, Enrico Anderlini, Salman Husain, Gordon Parker, Mohammad Abusara, Giles Thomas Nov 2020

Towards Real-Time Reinforcement Learning Control Of A Wave Energy Converter, Enrico Anderlini, Salman Husain, Gordon Parker, Mohammad Abusara, Giles Thomas

Michigan Tech Publications

The levellised cost of energy of wave energy converters (WECs) is not competitive with fossil fuel-powered stations yet. To improve the feasibility of wave energy, it is necessary to develop effective control strategies that maximise energy absorption in mild sea states, whilst limiting motions in high waves. Due to their model-based nature, state-of-the-art control schemes struggle to deal with model uncertainties, adapt to changes in the system dynamics with time, and provide real-time centralised control for large arrays of WECs. Here, an alternative solution is introduced to address these challenges, applying deep reinforcement learning (DRL) to the control of WECs …


Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network, Wenyuan Cui, Yunlu Zhang, Xinchang Zhang, Lan Li, Frank W. Liou Jan 2020

Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network, Wenyuan Cui, Yunlu Zhang, Xinchang Zhang, Lan Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Metal additive manufacturing (AM) is gaining increasing attention from academia and industry due to its unique advantages compared to the traditional manufacturing process. Parts quality inspection is playing a crucial role in theAMindustry, which can be adopted for product improvement. However, the traditional inspection process has relied on manual recognition, which could suffer from low efficiency and potential bias. This study presented a convolutional neural network (CNN) approach toward robust AM quality inspection, such as good quality, crack, gas porosity, and lack of fusion. To obtain the appropriate model, experiments were performed on a series of architectures. Moreover, data augmentation …


On Geometric Design Rules And In-Process Build Quality Monitoring Of Thin-Wall Features Made Using Laser Powder Bed Fusion Additive Manufacturing Process, Aniruddha Gaikwad Jan 2020

On Geometric Design Rules And In-Process Build Quality Monitoring Of Thin-Wall Features Made Using Laser Powder Bed Fusion Additive Manufacturing Process, Aniruddha Gaikwad

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The goal of this thesis is to quantify the link between the design features (geometry), in-process signatures, and build quality of parts made using the laser powder bed fusion (LPBF) additive manufacturing (AM) process. This knowledge is the foundational basis for proposing design rules in AM, as well as for detecting the impending build failures using in-process sensor data.

As a step towards this goal, the objectives of this work are two-fold:

1) Quantify the effect of the geometry and orientation on the build quality of thin-wall features. To explain further, the geometry related factor is the ratio of the …


Deep Learning Segmentation Of Coronary Calcified Plaque From Intravascular Optical Coherence Tomography (Ivoct) Images With Application To Finite Element Modeling Of Stent Deployment, Yazan Gharaibeh, Pengfei Dong, David Prabhu, Chaitanya Kolluru, Juhwan Lee, Vlad Zimin, Hozhabr Mozafari, Hiram Bizzera, Linxia Gu, David Wilson Feb 2019

Deep Learning Segmentation Of Coronary Calcified Plaque From Intravascular Optical Coherence Tomography (Ivoct) Images With Application To Finite Element Modeling Of Stent Deployment, Yazan Gharaibeh, Pengfei Dong, David Prabhu, Chaitanya Kolluru, Juhwan Lee, Vlad Zimin, Hozhabr Mozafari, Hiram Bizzera, Linxia Gu, David Wilson

Department of Mechanical and Materials Engineering: Faculty Publications

Because coronary artery calcified plaques can hinder or eliminate stent deployment, interventional cardiologists need a better way to plan interventions, which might include one of the many methods for calcification modification (e.g., atherectomy). We are imaging calcifications with intravascular optical coherence tomography (IVOCT), which is the lone intravascular imaging technique with the ability to image the extent of a calcification, and using results to build vessel-specific finite element models for stent deployment. We applied methods to a large set of image data (>45 lesions and > 2,600 image frames) of calcified plaques, manually segmented by experts into calcified, lumen and …


Deep Visual Gravity Vector Detection For Unmanned Aircraft Attitude Estimation, Gary J. Ellingson, David Wingate, Tim Mclain Sep 2017

Deep Visual Gravity Vector Detection For Unmanned Aircraft Attitude Estimation, Gary J. Ellingson, David Wingate, Tim Mclain

Faculty Publications

This paper demonstrates a feasible method for using a deep neural network as a sensor to estimate the attitude of a flying vehicle using only flight video. A dataset of still images and associated gravity vectors was collected and used to perform supervised learning. The network builds on a previously trained network and was trained to be able to approximate the attitude of the camera with an average error of about 8 degrees. Flight test video was recorded and processed with a relatively simple visual odometry method. The aircraft attitude is then estimated with the visual odometry as the state …