Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Engineering

Challenges In Kinetic-Kinematic Driven Musculoskeletal Subject-Specific Infant Modeling, Yeram Lim, Victor Huayamave, Tamara Chambers, Christine Walck, Safeer Siddicky, Erin Mannen Apr 2022

Challenges In Kinetic-Kinematic Driven Musculoskeletal Subject-Specific Infant Modeling, Yeram Lim, Victor Huayamave, Tamara Chambers, Christine Walck, Safeer Siddicky, Erin Mannen

Publications

Musculoskeletal computational models provide a non-invasive approach to investigate human movement biomechanics. These models could be particularly useful for pediatric applications where in vivo and in vitro biomechanical parameters are difficult or impossible to examine using physical experiments alone. The objective was to develop a novel musculoskeletal subject-specific infant model to investigate hip joint biomechanics during cyclic leg movements. Experimental motion-capture marker data of a supine-lying 2-month-old infant were placed on a generic GAIT 2392 OpenSim model. After scaling the model using body segment anthropometric measurements and joint center locations, inverse kinematics and dynamics were used to estimate hip ranges …


Use Of Pressure-Measuring Insoles To Characterize Gait Parameters In Simulated Reduced-Gravity Conditions, Christian Ison, Connor Neilsen, Jessica Deberardinis, Mohamed B. Trabia, Janet S. Dufek Sep 2021

Use Of Pressure-Measuring Insoles To Characterize Gait Parameters In Simulated Reduced-Gravity Conditions, Christian Ison, Connor Neilsen, Jessica Deberardinis, Mohamed B. Trabia, Janet S. Dufek

Mechanical Engineering Faculty Research

Prior researchers have observed the effect of simulated reduced-gravity exercise. However, the extent to which lower-body positive-pressure treadmill (LBPPT) walking alters kinematic gait characteristics is not well understood. The purpose of the study was to investigate the effect of LBPPT walking on selected gait parameters in simulated reduced-gravity conditions. Twenty-nine college-aged volunteers participated in this cross-sectional study. Participants wore pressure-measuring insoles (Medilogic GmBH, Schönefeld, Germany) and completed three 3.5-min walking trials on the LBPPT (AlterG, Inc., Fremont, CA, USA) at 100% (normal gravity) as well as reduced-gravity conditions of 40% and 20% body weight (BW). The resulting insole data were …


Cnn-Based Estimation Of Sagittal Plane Walking And Running Biomechanics From Measured And Simulated Inertial Sensor Data, Eva Dorschky, Marlies Nitschke, Christine F. Martindale, Antonie J. Van Den Bogert, Anne D. Koelewijn, Bjoern M. Eskofier Jan 2020

Cnn-Based Estimation Of Sagittal Plane Walking And Running Biomechanics From Measured And Simulated Inertial Sensor Data, Eva Dorschky, Marlies Nitschke, Christine F. Martindale, Antonie J. Van Den Bogert, Anne D. Koelewijn, Bjoern M. Eskofier

Mechanical Engineering Faculty Publications

Machine learning is a promising approach to evaluate human movement based on wearable sensor data. A representative dataset for training data-driven models is crucial to ensure that the model generalizes well to unseen data. However, the acquisition of sufficient data is time-consuming and often infeasible. We present a method to create realistic inertial sensor data with corresponding biomechanical variables by 2D walking and running simulations. We augmented a measured inertial sensor dataset with simulated data for the training of convolutional neural networks to estimate sagittal plane joint angles, joint moments, and ground reaction forces (GRFs) of walking and running. When …


Simulated Tremor Propagation In The Upper Limb: From Muscle Activity To Joint Displacement, Thomas Corie, Steven Knight Charles Aug 2019

Simulated Tremor Propagation In The Upper Limb: From Muscle Activity To Joint Displacement, Thomas Corie, Steven Knight Charles

Faculty Publications

Although tremor is the most common movement disorder, there are few non-invasive treatment options. Creating effective tremor suppression devices requires a knowledge of where tremor originates mechanically (which muscles) and how it propagates through the limb (to which degrees of freedom, DOF).

To simulate tremor propagation, we created a simple model of the upper limb, with tremorogenic activity in the 15 major superficial muscles as inputs and tremulous joint displacement in the 7 major DOF as outputs. The model approximated the muscle excitation-contraction dynamics, musculoskeletal geometry, and mechanical impedance of the limb.

From our simulations, we determined fundamental principles for …


Analyzing Moment Arm Profiles In A Full-Muscle Rat Hindlimb Model, Fletcher Young, Christian Rode, Alexander Hunt, Roger Quinn Jan 2019

Analyzing Moment Arm Profiles In A Full-Muscle Rat Hindlimb Model, Fletcher Young, Christian Rode, Alexander Hunt, Roger Quinn

Mechanical and Materials Engineering Faculty Publications and Presentations

Understanding the kinematics of a hindlimb model is a fundamental aspect of modeling coordinated locomotion. This work describes the development process of a rat hindlimb model that contains a complete muscular system and incorporates physiological walking data to examine realistic muscle movements during a step cycle. Moment arm profiles for selected muscles are analyzed and presented as the first steps to calculating torque generation at hindlimb joints. A technique for calculating muscle moment arms from muscle attachment points in a three-dimensional (3D) space has been established. This model accounts for the configuration of adjacent joints, a critical aspect of biarticular …


Use Of Flexible Sensor To Characterize Biomechanics Of Canine Skin, Austin Downey, Jin Yan, Eric M. Zellner, Karl H. Kraus, Iris V. Rivero, Simon Laflamme Jan 2019

Use Of Flexible Sensor To Characterize Biomechanics Of Canine Skin, Austin Downey, Jin Yan, Eric M. Zellner, Karl H. Kraus, Iris V. Rivero, Simon Laflamme

Faculty Publications

Background Suture materials and techniques are frequently evaluated in ex vivo studies by comparing tensile strengths. However, the direct measurement techniques to obtain the tensile forces in canine skin are not available, and, therefore, the conditions suture lines undergo is unknown. A soft elastomeric capacitor is used to monitor deformation in the skin over time by sensing strain. This sensor was applied to a sample of canine skin to evaluate its capacity to sense strain in the sample while loaded in a dynamic material testing machine. The measured strain of the sensor was compared with the strain measured by the …


Opensim Versus Human Body Model: A Comparison Study For The Lower Limbs During Gait, Antoine Falisse, Sam Van Rossom, Johannes Gijsbers, Frans Steenbrink, Ben J. Van Basten, Ilse Jonkers, Antonie J. Van Den Bogert, Friedl De Groote Dec 2018

Opensim Versus Human Body Model: A Comparison Study For The Lower Limbs During Gait, Antoine Falisse, Sam Van Rossom, Johannes Gijsbers, Frans Steenbrink, Ben J. Van Basten, Ilse Jonkers, Antonie J. Van Den Bogert, Friedl De Groote

Mechanical Engineering Faculty Publications

Musculoskeletal modeling and simulations have become popular tools for analyzing human movements. However, end users are often not aware of underlying modeling and computational assumptions. This study investigates how these assumptions affect biomechanical gait analysis outcomes performed with Human Body Model and the OpenSim gait2392 model. The authors compared joint kinematics, kinetics, and muscle forces resulting from processing data from 7 healthy adults with both models. Although outcome variables had similar patterns, there were statistically significant differences in joint kinematics (maximal difference: 9.8 degrees {[}1.5 degrees] in sagittal plane hip rotation), kinetics (maximal difference: 0.36 {[}0.10] N.m/kg in sagittal plane …


Kinematics Of The Lower Extremities During Fundamental Martial Arts Tricking Techniques, Kevin P. Grassie Apr 2017

Kinematics Of The Lower Extremities During Fundamental Martial Arts Tricking Techniques, Kevin P. Grassie

Honors Scholar Theses

Martial Arts Tricking (MAT) is a relatively new sport that combines martial arts, gymnastics, acrobatics, and breakdancing for the purposes of creating aesthetic and impressive combinations of kicks, flips and twists. It has been growing exponentially through social media and the overall athletic and entertainment communities. The sport is very unique in that the movements, with their blended influences, provide novel ways for athletes to generate and utilize their momentum in a creative way. The results often include off-axis flips and twists, single-leg landings, and complicated yet fluid techniques that easily chain together.

Due to the sport only being a …


Disturbed Cyclical Stretch Of Endothelial Cells Promotes Nuclear Expression Of The Pro-Atherogenic Transcription Factor Nf-Kb, Ryan M. Pedrigi, Konstantinos I. Papadimitriou, Avinash Kondiboyina, Sukhjinder Sidhu, James Chau, Miten B. Patel, Daniel C. Baeriswyl, Emmanuel M. Drakakis, Rob Krams Jan 2017

Disturbed Cyclical Stretch Of Endothelial Cells Promotes Nuclear Expression Of The Pro-Atherogenic Transcription Factor Nf-Kb, Ryan M. Pedrigi, Konstantinos I. Papadimitriou, Avinash Kondiboyina, Sukhjinder Sidhu, James Chau, Miten B. Patel, Daniel C. Baeriswyl, Emmanuel M. Drakakis, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

Exposure of endothelial cells to low and multidirectional blood flow is known to promote a pro-atherogenic phenotype. The mechanics of the vessel wall is another important mechano-stimulus within the endothelial cell environment, but no study has examined whether changes in the magnitude and direction of cell stretch can be pro-atherogenic. Herein, we developed a custom cell stretching device to replicate the in vivo stretch environment of the endothelial cell and examined whether low and multidirectional stretch promote nuclear translocation of NF-kB. A fluid–structure interaction model of the device demonstrated a nearly uniform strain within the region of cell attachment and …


Influence Of Shear Stress Magnitude And Direction On Atherosclerotic Plaque Composition, Ryan M. Pedrigi, Vikram V. Mehta, Sandra M. Bovens, Zahra Mohri, Christian Bo Poulsen, Willy Gsell, Jordi L. Tremoleda, Leila Towhidi, Ranil De Silva, Enrico Petretto, Rob Krams Jan 2016

Influence Of Shear Stress Magnitude And Direction On Atherosclerotic Plaque Composition, Ryan M. Pedrigi, Vikram V. Mehta, Sandra M. Bovens, Zahra Mohri, Christian Bo Poulsen, Willy Gsell, Jordi L. Tremoleda, Leila Towhidi, Ranil De Silva, Enrico Petretto, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

The precise flow characteristics that promote different atherosclerotic plaque types remain unclear. We previously developed a blood flow-modifying cuff for ApoE−/− mice that induces the development of advanced plaques with vulnerable and stable features upstream and downstream of the cuff, respectively. Herein, we sought to test the hypothesis that changes in flow magnitude promote formation of the upstream (vulnerable) plaque, whereas altered flow direction is important for development of the downstream (stable) plaque. We instrumented ApoE−/− mice (n=7) with a cuff around the left carotid artery and imaged them with micro-CT (39.6 μm resolution) eight to nine weeks …


Biomechanical Investigation Of Elite Place-Kicking, Chase M. Pfeifer Nov 2015

Biomechanical Investigation Of Elite Place-Kicking, Chase M. Pfeifer

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Many studies aim to understand the fundamentals of kicking commonly displayed by soccer players [4,6,10,16,17,18,24,25,28,29,30,34,36,38,40]. Of those studies, most are limited to a two-dimensional (2D) analysis using high-speed cameras for position tracking or utilizing electromyography to observe the activity of select muscles [4,6,18,25,29,36]. The few studies that investigate kicking using a three-dimensional (3D) model are limited in their position tracking capabilities and focus mainly on joint flexion potentials and foot speed.

This dissertation is a comprehensive biomechanical analysis (kinematic and EMG) of the field-goal place-kicking techniques of four elite kickers in American football. Data were compared and contrasted with ball …


Quantification Of Plaque Stiffness By Brillouin Microscopy In Experimental Thin Cap Fibroatheroma, Giuseppe Antonacci, Ryan M. Pedrigi, Avinash Kondiboyina, Vikram V. Mehta, Ranil De Silva, Carl Paterson, Rob Krams, Peter Torok Jan 2015

Quantification Of Plaque Stiffness By Brillouin Microscopy In Experimental Thin Cap Fibroatheroma, Giuseppe Antonacci, Ryan M. Pedrigi, Avinash Kondiboyina, Vikram V. Mehta, Ranil De Silva, Carl Paterson, Rob Krams, Peter Torok

Department of Mechanical and Materials Engineering: Faculty Publications

Plaques vulnerable to rupture are characterized by a thin and stiff fibrous cap overlaying a soft lipid-rich necrotic core. The ability to measure local plaque stiffness directly to quantify plaque stress and predict rupture potential would be very attractive, but no current technology does so. This study seeks to validate the use of Brillouin microscopy to measure the Brillouin frequency shift, which is related to stiffness, within vulnerable plaques. The left carotid artery of an ApoE-/- mouse was instrumented with a cuff that induced vulnerable plaque development in nine weeks. Adjacent histological sections from the instrumented and control arteries …


Correlations Between Internal And External Power Outputs During Weightlifting Exercise, Kristof Kipp, Chad Harris, Michelle B. Sabick Apr 2013

Correlations Between Internal And External Power Outputs During Weightlifting Exercise, Kristof Kipp, Chad Harris, Michelle B. Sabick

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Identifying loads that maximize mechanical power is important because training at such loads may optimize gains in dynamic athletic performance. The purpose of this study was to examine correlations between measures of external mechanical power output and internal mechanical joint power output across different loads during a weightlifting exercise. Ten subjects performed 3 sets of the clean exercise at 65, 75, and 85% of 1 repetition maximum (1RM). Peak external mechanical power output was calculated with 4 commonly used methods, whereas an inverse dynamics approach was used to calculate peak internal mechanical power output for the hip, knee, and ankle …


Weightlifting Performance Is Related To Kinematic And Kinetic Patterns Of The Hip And Knee Joints, Kristof Kipp, Josh Redden, Michelle B. Sabick, Chad Harris Jul 2012

Weightlifting Performance Is Related To Kinematic And Kinetic Patterns Of The Hip And Knee Joints, Kristof Kipp, Josh Redden, Michelle B. Sabick, Chad Harris

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The purpose of this study was to investigate correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while ten subjects performed a clean at 85% of 1-RM. Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body-mass normalized 1-RM. Two hip kinematic and two knee kinetic patterns were significantly correlated with relative 1-RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion …


Implicit Methods For Efficient Musculoskeletal Simulation And Optimal Control, Antonie J. Van Den Bogert, Dimitra Blana, Dieter Heinrich Jan 2011

Implicit Methods For Efficient Musculoskeletal Simulation And Optimal Control, Antonie J. Van Den Bogert, Dimitra Blana, Dieter Heinrich

Mechanical Engineering Faculty Publications

The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations …


A Biomechanical Comparison Of Polymethylmethacrylate-Reinforced And Expansive Pedicle Screws In Pedicle-Screw Revisions, Bora Bostan, Irfan Esenkaya, Taner Gunes, Mehmet Erdem, Murat Asci, Mehmet Halidun Kelestemur, Cengiz Sen Dec 2009

A Biomechanical Comparison Of Polymethylmethacrylate-Reinforced And Expansive Pedicle Screws In Pedicle-Screw Revisions, Bora Bostan, Irfan Esenkaya, Taner Gunes, Mehmet Erdem, Murat Asci, Mehmet Halidun Kelestemur, Cengiz Sen

Faculty Publications - Mechanical Engineering

Objectives: Different techniques and choices exist for revision of pedicle screws, two of which are pedicle screw combined with cement augmentation and expansive pedicle screw fixation. This biomechanical study was designed to compare the pullout strengths of two different revision techniques. Methods: Fourteen lumbar vertebrae obtained from four calves (mean age 15 months) were divided into two groups equal in number. Monoaxial 6.0-mm pedicle screws were inserted into the right pedicles, and axial pullout testing was performed at a rate of 10 mm/min and failure strengths were recorded. Revision was performed with the same-sized pedicle screws reinforced with polymethyl-methacrylate in …


A Real-Time, 3-D Musculoskeletal Model For Dynamic Simulation Of Arm Movements, Edward K. Chadwick, Dimitra Blana, Antonie J. Van Den Bogert, Robert F. Kirsch Apr 2009

A Real-Time, 3-D Musculoskeletal Model For Dynamic Simulation Of Arm Movements, Edward K. Chadwick, Dimitra Blana, Antonie J. Van Den Bogert, Robert F. Kirsch

Mechanical Engineering Faculty Publications

Neuroprostheses can be used to restore movement of the upper limb in individuals with high-level spinal cord injury. Development and evaluation of command and control schemes for such devices typically require real-time, ldquopatient-in-the-looprdquo experimentation. A real-time, 3-D, musculoskeletal model of the upper limb has been developed for use in a simulation environment to allow such testing to be carried out noninvasively. The model provides real-time feedback of human arm dynamics that can be displayed to the user in a virtual reality environment. The model has a 3-DOF glenohumeral joint as well as elbow flexion/extension and pronation/supination and contains 22 muscles …


Articular Cartilage Mechanical And Biochemical Property Relations Before And After In Vitro Growth, Timothy Ficklin, Gregory Thomas, James C. Barthel, Anna Asanbaeva, Eugene J. Thonar, Koichi Masuda, Albert C. Chen, Robert L. Sah, Andrew Davol, Stephen M. Klisch Jul 2007

Articular Cartilage Mechanical And Biochemical Property Relations Before And After In Vitro Growth, Timothy Ficklin, Gregory Thomas, James C. Barthel, Anna Asanbaeva, Eugene J. Thonar, Koichi Masuda, Albert C. Chen, Robert L. Sah, Andrew Davol, Stephen M. Klisch

Mechanical Engineering

The aim of this study was to design in vitro growth protocols that can comprehensively quantify articular cartilage structure–function relations via measurement of mechanical and biochemical properties. Newborn bovine patellofemoral groove articular cartilage explants were tested sequentially in confined compression (CC), unconfined compression (UCC), and torsional shear before (D0, i.e. day zero) and after (D14, i.e. day 14) unstimulated in vitro growth. The contents of collagen (COL), collagen-specific pyridinoline (PYR) crosslinks, glycosaminoglycan, and DNA significantly decreased during in vitro growth; consequently, a wide range of biochemical properties existed for investigating structure–function relations when pooling the D0 and D14 groups. All …


Regional Mechanical Properties And Stress Analysis Of The Human Anterior Lens Capsule, Ryan M. Pedrigi, G. David, J. Dziezyc, J. D. Humphrey Jan 2007

Regional Mechanical Properties And Stress Analysis Of The Human Anterior Lens Capsule, Ryan M. Pedrigi, G. David, J. Dziezyc, J. D. Humphrey

Department of Mechanical and Materials Engineering: Faculty Publications

The lens capsule of the eye functions, in part, as a deformable support through which the ciliary body applies tractions that can alter lens curvature and corresponding refractive power during the process of accommodation. Although it has long been recognized that characterization of the mechanical properties of the lens capsule is fundamental to understanding this physiologic process as well as clinical interventions, prior data have been limited by one-dimensional testing of excised specimens despite the existence of multiaxial loading in vivo. In this paper, we employ a novel experimental approach to study in situ the regional, multiaxial mechanical behavior of …


Comparison Of The Pull-Out Strengths Of Three Different Screws In Pedicular Screw Revisions: A Biomechanical Study, Irfan Esenkaya, Yurdaer Denizhan, Mehmet Akif Kaygusuz, Mehmet Yetmez, Mehmet Halidun Keleştemur Jan 2006

Comparison Of The Pull-Out Strengths Of Three Different Screws In Pedicular Screw Revisions: A Biomechanical Study, Irfan Esenkaya, Yurdaer Denizhan, Mehmet Akif Kaygusuz, Mehmet Yetmez, Mehmet Halidun Keleştemur

Faculty Publications - Mechanical Engineering

OBJECTIVES: We investigated the possible effects of three pedicular screws on axial pull-out strength in pedicular revision surgery. METHODS: Two study groups were formed from calf lumbar vertebrae. Initially, Alici pedicular screws with an outer diameter of 6.5 mm were applied (with or without tapping) to all the pedicles. All the pedicles were subjected to axial pull-out testing to induce pedicular insufficiency. Then, Alici pedicular screws with an outer diameter of 7 mm were applied to the left pedicles. The right pedicles in the two study groups were assigned to receive two different types of pedicular screws with an expandable …


The Biomechanical Aspects Of Pedestrian Protection, Krishnakanth Aekbote, Peter Schuster, Sunny Kankanala, Srini Sundararajan, Stephen W. Rouhana Jan 2003

The Biomechanical Aspects Of Pedestrian Protection, Krishnakanth Aekbote, Peter Schuster, Sunny Kankanala, Srini Sundararajan, Stephen W. Rouhana

Mechanical Engineering

In this paper a biomechanical basis for pedestrian protection is presented based on reviews of epidemiological and biomechanical studies conducted over the last three decades. Epidemiological studies reveal the nature and cause of pedestrian crashes and injuries sustained in the field. The various factors that influence pedestrian crashes and fatalities such as pedestrian demographics, time and location of crash, type of vehicles involved and their design characteristics, impact speeds, and nature and severity of injuries sustained are covered in the epidemiology section. The biomechanical studies identify the injury mechanisms and the biomechanical tolerances. Several biomechanical studies that attempt to identify …


Mechanical Property Characterization Of Mouse Zona Pellucida, Yu Sun, Kai-Tak Wan, K. P. Roberts, J. C. Bischof, B. J. Nelson Jan 2003

Mechanical Property Characterization Of Mouse Zona Pellucida, Yu Sun, Kai-Tak Wan, K. P. Roberts, J. C. Bischof, B. J. Nelson

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Previous intracytoplasmic sperm injection (ICSI) studies have indicated significant variation in ICSI success rates among different species. In mouse ICSI, the zona pellucida (ZP) undergoes a "hardening" process at fertilization in order to prevent subsequent sperm from penetrating. There have been few studies investigating changes in the mechanical properties of mouse ZP post fertilization. To characterize mouse ZP mechanical properties and quantitate the mechanical property differences of the ZP before and after fertilization, a microelectromechanical systems-based multiaxis cellular force sensor has been developed. A microrobotic cell manipulation system employing the multiaxis cellular force sensor is used to conduct mouse ZP …


A Theory Of Volumetric Growth For Compressible Elastic Biological Materials, Stephen M. Klisch, Timothy J. Van Dyke, Anne Hoger Dec 2001

A Theory Of Volumetric Growth For Compressible Elastic Biological Materials, Stephen M. Klisch, Timothy J. Van Dyke, Anne Hoger

Mechanical Engineering

A general theory of volumetric growth for compressible elastic materials is presented. The authors derive a complete set of governing equations in the present configuration for an elastic material undergoing a continuous growth process. In particular, they obtain two constitutive restrictions from a work-energy principle. First, the authors show that a growing elastic material behaves as a Green-elastic material. Second, they obtain an expression that relates the stress power due to growth to the rate of energy change due to growth. Then, the governing equations for a small increment of growth are derived from the more general theory. The equations …


Optimization Of The Seating Position In A Human-Powered Vehicle, Y. Lei, Mohamed Trabia, D. Too Jun 1993

Optimization Of The Seating Position In A Human-Powered Vehicle, Y. Lei, Mohamed Trabia, D. Too

Mechanical Engineering Faculty Research

Until recently, most of the human-powered vehicles (HPV) were designed focusing solely on its aerodynamics characteristic. In many of these HPV designs, the rider seating position was arbitrarily chosen without consideration of its effect on the rider's comfort and cycling effectiveness. Also, there is no guarantee that the seating position is related to maximum power output. Too (1991) used an experimental approach to determine that the rider will produce the maximum anaerobic power when the seat tube angle of a bicycle is at 75° whereas Hull and Gonzalez (1990) used an engineering approach to optimize the cycling biomechanics. However several …