Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Predictability Of Mechanical Behavior Of Additively Manufactured Particulate Composites Using Machine Learning And Data-Driven Approaches, Steven Malley, Crystal Reina, Somer Nacy, Jérôme Gilles, Behrad Koohbor Nov 2022

Predictability Of Mechanical Behavior Of Additively Manufactured Particulate Composites Using Machine Learning And Data-Driven Approaches, Steven Malley, Crystal Reina, Somer Nacy, Jérôme Gilles, Behrad Koohbor

Henry M. Rowan College of Engineering Faculty Scholarship

Additive manufacturing and data analytics are independently flourishing research areas, where the latter can be leveraged to gain a great insight into the former. In this paper, the mechanical responses of additively manufactured samples using vat polymerization process with different weight ratios of magnetic microparticles were used to develop, train, and validate a neural network model. Samples with six different compositions, ranging from neat photopolymer to a composite of photopolymer with 4 wt.% of magnetic particles, were manufactured and mechanically tested at quasi-static strain rate and ambient environmental conditions. The experimental data were also synthesized using a data-driven approach based …


Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu Oct 2022

Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

In this study, a finite element (FE)-based machine learning model was developed to predict the mechanical properties of bioglass (BG)-collagen (COL) composite hydrogels. Based on the experimental observation of BG-COL composite hydrogels with scanning electron microscope, 2000 microstructural images with randomly distributed BG particles were created. The BG particles have diameters ranging from 0.5 μm to 1.5 μm and a volume fraction from 17% to 59%. FE simulations of tensile testing were performed for calculating the Young’s modulus and Poisson’s ratio of 2000 microstructures. The microstructural images and the calculated Young’s modulus and Poisson’s ratio by FE simulation were used …


Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen Oct 2022

Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing of dense SiC parts was achieved via an extrusion-based process followed by electrical-field assisted pressure-less sintering. The aim of this research was to study the effect of the rheological behavior of SiC slurry on the printing process and quality, as well as the influence of 3D printing parameters on the dimensions of the extruded filament, which are directly related to the printing precision and quality. Different solid contents and dispersant- Darvan 821A concentrations were studied to optimize the viscosity, thixotropy and sedimentation rate of the slurry. The optimal slurry was composed of 77.5 wt% SiC, Y2O3 and Al2O3 …


Predicting Defects In Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data And Machine Learning, Sina Malakpour Estalaki, Cody S. Lough, Robert G. Landers, Edward C. Kinzel, Tengfei Luo Oct 2022

Predicting Defects In Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data And Machine Learning, Sina Malakpour Estalaki, Cody S. Lough, Robert G. Landers, Edward C. Kinzel, Tengfei Luo

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Variation in the local thermal history during the Laser Powder Bed Fusion (LPBF) process in Additive Manufacturing (AM) can cause micropore defects, which add to the uncertainty of the mechanical properties (e.g., fatigue life, tensile strength) of the built materials. In-situ sensing has been proposed for monitoring the AM process to minimize defects, but successful minimization requires establishing a quantitative relationship between the sensing data and the porosity, which is particularly challenging with a large number of variables (e.g., laser speed, power, scan path, powder property). Physics-based modeling can simulate such an in-situ sensing-porosity relationship, but it is computationally costly. …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers Sep 2022

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers Sep 2022

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Ultra-Broadband And Polarization-Insensitive Metasurface Absorber With Behavior Prediction Using Machine Learning, Shobhit K. Patel, Juveriya Parmar, Vijay Katkar, Fahad Ahmed Al-Zahrani, Kawsar Ahmed Mar 2022

Ultra-Broadband And Polarization-Insensitive Metasurface Absorber With Behavior Prediction Using Machine Learning, Shobhit K. Patel, Juveriya Parmar, Vijay Katkar, Fahad Ahmed Al-Zahrani, Kawsar Ahmed

Department of Mechanical and Materials Engineering: Faculty Publications

The solar spectrum energy absorption is very important for designing any solar absorber. The need for absorbing visible, infrared, and ultraviolet regions is increasing as most of the absorbers absorb visible regions. We propose a metasurface solar absorber based on Ge2Sb2Te5 (GST) substrate which increases the absorption in visible, infrared and ultraviolet regions. GST is a phase-changing material having two different phases amorphous (aGST) and crystalline (cGST). The absorber is also analyzed using machine learning algorithm to predict the absorption values for different wavelengths. The solar absorber is showing an ultra-broadband response covering a 0.2–1.5 …