Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Manufacturing And Characterization Of Continuous Nanofiber-Reinforced Composites, Lucas Barry Aug 2022

Manufacturing And Characterization Of Continuous Nanofiber-Reinforced Composites, Lucas Barry

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Fiber-reinforced composite laminates are some of the most advanced structural materials available. However, delamination remains a critical challenge due to its prevalence in structures and ability to cause catastrophic failure. Recently, high-temperature composites are at the forefront of polymer-matrix composites research, but they are prone to microcracking followed by delamination. Nanoreinforcement of interfaces by continuous nanofibers has been proposed earlier at UNL and produced increased interlaminar fracture resistance in conventional advanced composites. However, no studies have yet been conducted on emerging high-temperature composites. Also, there is insufficient information on the translatability of observed modes I and II interlaminar fracture toughness …


Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany G. Micheal Prof., Yehia Bahei El Din Prof. Feb 2022

Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany G. Micheal Prof., Yehia Bahei El Din Prof.

Centre for Advanced Materials

Composite structures reinforced with electrically active filaments are modeled with the finite element method while the underlying thermo-electromechanical coupling phenomena and damage are taken into consideration. At the outset, structural analysis is performed with a general-purpose finite element code and a special material routine, which propagates local phenomena to the overall scale is utilized. The material routine implements an interactive, multiscale analysis, which provides seamless integration of the mechanics at the composite’s micro, macro, and structural length scales. The interface between the multiscale material routine and the finite element code is made through nonmechanical strains caused by damage, and piezo/pyro-electric …


Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany Micheal, Yehia Bahei-El-Din Jan 2022

Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Interrogation of composite structures for inherent damage is investigated by implementing a three-tier analysis scheme. The analysis starts at the structure level where a general-purpose Finite Element code ABAQUS is employed to obtain the stress field in the second level of analysis which is the composite laminate. A special material routine is prepared to propagate the local fields to the individual plies and hence to the third level of analysis which is the microstructure modeling of the composite. Through the third level of analysis, interface damage between fiber and matrix is checked implementing a certain failure criteria. The interaction between …