Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Feasibility Of Wireless Power Transfer For Electrification Of Transportation: Techno-Economics And Life Cycle Assessment, Jason C. Quinn, B. J. Limb, P. Barr Jul 2015

Feasibility Of Wireless Power Transfer For Electrification Of Transportation: Techno-Economics And Life Cycle Assessment, Jason C. Quinn, B. J. Limb, P. Barr

Mechanical and Aerospace Engineering Faculty Publications

Integration of wireless power transfer (WPT) systems in roadways and vehicles represents a promising alternative to traditional internal combustion transportation systems. The economic feasibility and environmental impact of WPT applied to the transportation system is evaluated through the development of engineering system models. For a 20% penetration of the WPT technology in vehicles, results show a 20% reduction in air pollutants, 10% reduction in energy use and CO2 emissions and a societal level payback (defined as total cost of ownership savings compared to a traditional vehicle equal to roadway infrastructure) of 3 years. The modeled system covers 86% of all …


Does Material Choice Drive Sustainability Of 3d Printing?, Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye Feb 2015

Does Material Choice Drive Sustainability Of 3d Printing?, Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye

Dartmouth Scholarship

Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine …


Umass Amherst Energy Modeling Guidelines, Nariman Mostafavi, Ted Mendoza, Jeffrey G. Quackenbush, Sandy J. Beauregard, Jason J. Burbank, Mohamad Farzinmoghadam, Ludmilla Pavlova-Gillham, Kylie A. Landrey Jan 2015

Umass Amherst Energy Modeling Guidelines, Nariman Mostafavi, Ted Mendoza, Jeffrey G. Quackenbush, Sandy J. Beauregard, Jason J. Burbank, Mohamad Farzinmoghadam, Ludmilla Pavlova-Gillham, Kylie A. Landrey

Campus Planning Reports and Plans

Facilities & Campus Services, Sustainable UMass and Campus Planning support sustainability and energy conservation initiatives by providing in-house resources to campus staff as well as designers and contractors working with the University. The Campus energy Modeling Guidelines were developed in 2015 as a resource on how to: i) generate energy models for campus buildings; ii) provide quality assurance review of current energy models; and iii) share UMass Amherst energy modeling input parameters with project design teams for them to establish a baseline building energy profile.


Umass Amherst Building Measurement, Verification, Coordination And Template Plan, Nariman Mostafavi, Ted Mendoza, Jeffrey G. Quackenbush, Sandy J. Beauregard, Jason J. Burbank, Mohamad Farzinmoghadam, Ludmilla Pavlova-Gillham, Kylie A. Landrey, Patricia O'Flaherty Jan 2015

Umass Amherst Building Measurement, Verification, Coordination And Template Plan, Nariman Mostafavi, Ted Mendoza, Jeffrey G. Quackenbush, Sandy J. Beauregard, Jason J. Burbank, Mohamad Farzinmoghadam, Ludmilla Pavlova-Gillham, Kylie A. Landrey, Patricia O'Flaherty

Campus Planning Reports and Plans

Facilities & Campus Services, Sustainable UMass and Campus Planning support sustainability and energy conservation initiatives by providing in-house resources to campus staff as well as designers and contractors working with the University. The UMass Amherst Building Measurement, Verification, Coordination and Template Plan was begun in 2013 and finalized in 2015 as a resource to project teams that undertake the measurement and verification of building systems during the first year of occupancy of a new building and renovation project, particularly projects undergoing LEED certification.