Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Mechanical Engineering Faculty Publications

Series

Laser-shockwave

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Formation Of Two-Way Shape Memory Effect In Niti Alloy Using Pulsed Laser Irradiation, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Dovletgeldi Seyitliyev, Zachary Thomas, Duvall Roberts, Omer San, Haluk E. Karaca, Ali O. Er Feb 2018

Formation Of Two-Way Shape Memory Effect In Niti Alloy Using Pulsed Laser Irradiation, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Dovletgeldi Seyitliyev, Zachary Thomas, Duvall Roberts, Omer San, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can …


Laser Shock Wave Assisted Patterning On Niti Shape Memory Alloy Surfaces, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Haluk E. Karaca, Ali O. Er Feb 2017

Laser Shock Wave Assisted Patterning On Niti Shape Memory Alloy Surfaces, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning …


Recoverable Stress Induced Two-Way Shape Memory Effect On Niti Surface Using Laser-Produced Shock Wave, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Zachary Thomas, Orhan Alal, Haluk E. Karaca, Ali O. Er Feb 2017

Recoverable Stress Induced Two-Way Shape Memory Effect On Niti Surface Using Laser-Produced Shock Wave, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Zachary Thomas, Orhan Alal, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

The surfaces of Ni50Ti50 shape memory alloys (SMAs) were patterned by laser scribing. This method is more simplistic and efficient than traditional indentation techniques, and has also shown to be an effective method in patterning these materials. Different laser energy densities ranging from 5 mJ/pulse to 56 mJ/pulse were used to observe recovery on SMA surface. The temperature dependent heat profiles of the NiTi surfaces after laser scribing at 56 mJ/pulse show the partially-recovered indents, which indicate a "shape memory effect (SME)" Experimental data is in good agreement with theoretical simulation of laser induced shock wave propagation inside NiTi SMAs. …