Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Faculty Publications

Series

2023

Origami-based

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Heat Set Creases In Polyethylene Terephthalate (Pet) Sheets To Enable Origami-Based Applications, Brandon Sargent, Nathan Brown, Brian D. Jensen, Spencer P. Magleby, William G. Pitt, Larry L. Howell Mar 2023

Heat Set Creases In Polyethylene Terephthalate (Pet) Sheets To Enable Origami-Based Applications, Brandon Sargent, Nathan Brown, Brian D. Jensen, Spencer P. Magleby, William G. Pitt, Larry L. Howell

Faculty Publications

Polyethylene terephthalate (PET) sheets show promise for application in origami-based engineering design. Origami-based engineering provides advantages that are not readily available in traditional engineering design methods. Several processing methods were examined to identify trends and determine the effect of processing of PET sheets on the crease properties of origami mechanisms in PET. Various annealing times, temperatures, and cooling rates were evaluated and data collected for over 1000 samples. It was determined that annealing temperature plays the largest role in crease response. An increase in the crystallinity of a PET sheet while in the folded state likely increases the force response …


An Origami-Based Medical Support System To Mitigate Flexible Shaft Buckling, Brandon Sargent, Jared Butler, Kendall Seymour, David Bailey, Brian D. Jensen, Spencer P. Magleby, Larry L. Howell Mar 2023

An Origami-Based Medical Support System To Mitigate Flexible Shaft Buckling, Brandon Sargent, Jared Butler, Kendall Seymour, David Bailey, Brian D. Jensen, Spencer P. Magleby, Larry L. Howell

Faculty Publications

This paper presents the development of an origami-inspired support system (the OriGuide) that enables the insertion of flexible instruments using medical robots. Varying parameters of a triangulated cylindrical origami pattern were combined to create an effective highly-compressible anti-buckling system that maintains a constant inner diameter for supporting an instrument and a constant outer diameter throughout actuation. The proposed origami pattern is composed of two repeated patterns: a bistable pattern to create support points to mitigate flexible shaft buckling and a monostable pattern to enable axial extension and compression of the support system. The origami-based portion of the device is combined …


Load-Displacement Characterization In Three Degrees Of Freedom For General Let Arrays, Nathan A. Pehrson, Pietro Bilancia, Spencer P. Magleby, Larry L. Howell Mar 2023

Load-Displacement Characterization In Three Degrees Of Freedom For General Let Arrays, Nathan A. Pehrson, Pietro Bilancia, Spencer P. Magleby, Larry L. Howell

Faculty Publications

Lamina emergent torsion (LET) joints for use in origami-based applications enables folding of panels. Placing LET joints in series and parallel (formulating LET arrays) opens the design space to provide for tunable stiffness characteristics in other directions while maintaining the ability to fold. Analytical equations characterizing the elastic load-displacement for general serial-parallel formulations of LET arrays for three degrees of freedom are presented: rotation about the desired axis, in-plane rotation, and extension/compression. These equations enable the design of LET arrays for a variety of applications, including origami-based mechanisms. These general equations are verified using finite element analysis and, to show …


Conceptualizing Stable States In Origami-Based Devices Using An Energy Visualization Approach, Jacob Greenwood, Larry L. Howell, Alex Avila, Spencer P. Magleby Mar 2023

Conceptualizing Stable States In Origami-Based Devices Using An Energy Visualization Approach, Jacob Greenwood, Larry L. Howell, Alex Avila, Spencer P. Magleby

Faculty Publications

In many origami-based applications, a device needs to be maintained in one or more fold states. The origami stability integration method (OSIM) presented in this paper pro- vides an approach for graphically combining various techniques to achieve stability. Existing stability techniques are also categorized into four groups based on whether they are intrinsic or extrinsic to the origami pattern and whether they exhibit gradual or non-gradual energy storage behaviors. These categorizations can help designers select appropriate techniques for their applications. The paper also contains de- sign considerations and resources for achieving stability. Finally, two case studies are presented that use …