Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Faculty Publications

Series

2023

LET joints

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Load-Displacement Characterization In Three Degrees Of Freedom For General Let Arrays, Nathan A. Pehrson, Pietro Bilancia, Spencer P. Magleby, Larry L. Howell Mar 2023

Load-Displacement Characterization In Three Degrees Of Freedom For General Let Arrays, Nathan A. Pehrson, Pietro Bilancia, Spencer P. Magleby, Larry L. Howell

Faculty Publications

Lamina emergent torsion (LET) joints for use in origami-based applications enables folding of panels. Placing LET joints in series and parallel (formulating LET arrays) opens the design space to provide for tunable stiffness characteristics in other directions while maintaining the ability to fold. Analytical equations characterizing the elastic load-displacement for general serial-parallel formulations of LET arrays for three degrees of freedom are presented: rotation about the desired axis, in-plane rotation, and extension/compression. These equations enable the design of LET arrays for a variety of applications, including origami-based mechanisms. These general equations are verified using finite element analysis and, to show …


Membrane-Enhanced Lamina Emergent Torsional Joints For Surrogate Folds, Guimin Chen, Spencer P. Magleby, Larry L. Howell Feb 2023

Membrane-Enhanced Lamina Emergent Torsional Joints For Surrogate Folds, Guimin Chen, Spencer P. Magleby, Larry L. Howell

Faculty Publications

Lamina emergent compliant mechanisms (including origami-adapted compliant mechanisms) are me- chanical devices that can be fabricated from a planar material (a lamina) and have motion that emerges out of the fabrication plane. Lamina emergent compliant mechanisms often exhibit undesirable para- sitic motions due to the planar fabrication constraint. This work introduces a type of lamina emergent torsion (LET) joint that reduces parasitic motions of lamina emergent mechanisms (LEMs), and presents equations for modeling parasitic motion of LET joints. The membrane joint also makes possible one-way joints that can ensure origami-based mechanisms emerge from their flat state (a change point) into …