Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Faculty Publications

Series

2015

Rigid foldability

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Rigidly Foldable Origami Gadgets And Tessellations, Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, Larry L. Howell Sep 2015

Rigidly Foldable Origami Gadgets And Tessellations, Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, Larry L. Howell

Faculty Publications

Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented.


Rigidly Foldable Origami Twists, Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, Larry L. Howell Jan 2015

Rigidly Foldable Origami Twists, Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, Larry L. Howell

Faculty Publications

Rigid foldability is an important characteristic of origami structures that becomes significant with non-paper materials. A rigidly foldable origami tessellation is one where the sectors remain rigid and all deflection occurs at the crease lines. Many rigidly foldable patterns have only one degree of freedom, making them potentially useful for deployable structures. Methods have been developed to construct rigidly foldable origami tessellations using materials with finite thickness based on zero-thickness rigidly foldable patterns. [Tachi 11].

Origami methods have been considered for application in deployable structures such as solar panels [Miura 85] [Zirbel et al. 13] and sterile shrouds [Francis et …