Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Enhance Diamond Coating Adhesion By Oriented Interlayer Microcracking, Habio Guo, Xingcheng Xiao, Yue Qi, Zhi-Hui Xu, Xiaodong Li Dec 2009

Enhance Diamond Coating Adhesion By Oriented Interlayer Microcracking, Habio Guo, Xingcheng Xiao, Yue Qi, Zhi-Hui Xu, Xiaodong Li

Faculty Publications

In this paper, we report a microcrack toughening mechanism for enhancing the adhesion of diamondcoating. The oriented microcracks were formed within the TiC interlayer to dissipate strain energy and accommodate deformation via the crack opening-closing mechanism, thus enhancing the coating/substrate interfacial toughness. The delamination of diamondcoating was effectively prevented when the parallel microcracks were confined within the interlayer and arrested at interfaces of coating/interlayer/substrate. Density functional theory calculations revealed that the highly anisotropicfracture strength of the TiC phase energetically favors crack initiation and propagation along (100) planes only, which are 54.7° away from the interface. These microcracks are constrained inside …


Performance Flight Testing Of Small Electric Powered Unmanned Aerial Vehicles, Jon N. Ostler, W. Jerry Bowman, Deryl O. Snyder, Timothy W. Mclain Sep 2009

Performance Flight Testing Of Small Electric Powered Unmanned Aerial Vehicles, Jon N. Ostler, W. Jerry Bowman, Deryl O. Snyder, Timothy W. Mclain

Faculty Publications

Flight testing methods are developed to find the drag polar for small unmanned aerial vehicles powered by electric motors with fixed-pitch propellers. Wind tunnel testing was used to characterize the propeller-motor efficiency. The drag polar was constructed using data from flight tests. This drag polar was then used to find the following performance parameters: maximum velocity, minimum velocity, velocity for maximum range, velocity for maximum endurance, maximum rate of climb, maximum climb angle, minimum turn radius, maximum turn rate, and maximum bank angle. The developed flight testing methods are used to characterize the performance of a small UAV.


Lamina Emergent Torsion (Let) Joint, Joseph O. Jacobsen, Guimin Chen, Larry L. Howell, Spencer P. Magleby Jul 2009

Lamina Emergent Torsion (Let) Joint, Joseph O. Jacobsen, Guimin Chen, Larry L. Howell, Spencer P. Magleby

Faculty Publications

Part of the challenge in designing compliant mechanisms is finding suitable joints that provide the needed motion and force-deflection characteristics. The Lamina Emergent Torsional (LET) Joint is presented as a compliant joint suited for applications where large angular rotation is desired, but high off-axis stiffness is not as critical. The joint is introduced and the equations necessary for determining the force-deflection characteristics are presented. Since the LET Joint can be fabricated from a single planar layer, it is well suited for macro and micro applications. Illustrative examples are provided with devices fabricated from materials as diverse as steel, polypropylene, and …


Dynamics And Control Of Cable-Drogue System In Aerial Recovery Of Micro Air Vehicles Based On Gauss's Principle, Liang Sun, Randal W. Beard, Mark B. Colton, Timothy W. Mclain Jun 2009

Dynamics And Control Of Cable-Drogue System In Aerial Recovery Of Micro Air Vehicles Based On Gauss's Principle, Liang Sun, Randal W. Beard, Mark B. Colton, Timothy W. Mclain

Faculty Publications

This paper presents a new concept for aerial recovery of Micro Air Vehicles (ARMAVs) using a large mothership and a recovery drogue. The mothership drags a drogue attached to a cable and the drogue is controlled to match the flight patten of the MAV. This paper uses Gauss’s Principle to derive the dynamic model of the cable-drogue systems. A controllable drogue plays a key role in recovering MAVs in windy conditions. We develop a control approach for the drogue using its drag coefficient. Simulation results based on multilink cable-drogue systems present the feasibility of the aerial recovery concept and the …


Tobacco Mosaic Virus Templated Synthesis Of One Dimensional Inorganic-Polymer Hybrid Fibres, Jianhua Rong, Fiona Oberbeck, Xinnan Wang, Xiaodong Li, Jerry Oxsher, Zhongwei Niu, Qian Wang May 2009

Tobacco Mosaic Virus Templated Synthesis Of One Dimensional Inorganic-Polymer Hybrid Fibres, Jianhua Rong, Fiona Oberbeck, Xinnan Wang, Xiaodong Li, Jerry Oxsher, Zhongwei Niu, Qian Wang

Faculty Publications

Inorganic–polymer hybrid nanofibres were prepared by using a rod-like tobacco mosaic virus (TMV) as a template. With tetraethylorthosilicate (TEOS) as a precursor, long silica-coated TMVfibres were formed via a head-to-tail assembly, which showed a substantial increase of the elastic modulus. Furthermore, homogenous titania–TMV hybrid fibres could be prepared using polyaniline-coated TMV fibres as a template, which were used to form a composite film that was able to sense liquefied petroleum gases.


Payload Directed Flight Of Miniature Air Vehicles, Randal W. Beard, Clark Taylor, Jeff Saunders, Ryan Holt, Timothy W. Mclain Apr 2009

Payload Directed Flight Of Miniature Air Vehicles, Randal W. Beard, Clark Taylor, Jeff Saunders, Ryan Holt, Timothy W. Mclain

Faculty Publications

This paper describes three applications of payload directed flight using miniature air vehicles: vision-based road following, vision-based target tracking, and vision-based mapping. A general overview of each application is given, followed by simulation and flight-test results. Results demonstrate the viability of utilizing electo-optical video imagery to directly control the air vehicle flight path to enhance performance relative to the sensing objective.


La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen Mar 2009

La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen

Faculty Publications

Porous yttria-stabilized bismuth oxides (YSB) were investigated as the backbones for (LSM) infiltrated cathodes in intermediate-temperature solid oxide fuel cells. The cathodes were evaluated using anode-supported single cells with scandia-stabilized zirconia as the electrolytes. With humidified as the fuel, the cell showed peak power density of 0.33, 0.52, and at 650, 700, and , respectively. At , the cell polarization resistance was only , of the lowest value previously reported, indicating that YSB is a promising backbone for the LSM infiltrated cathode.


Low Temperature, Organic-Free Synthesis Of Ba3B6O9(Oh)6 Nanorods And Ss-Bab2O4 Nanospindles, Rui Li, Xinyoung Tao, Xiaodong Li Feb 2009

Low Temperature, Organic-Free Synthesis Of Ba3B6O9(Oh)6 Nanorods And Ss-Bab2O4 Nanospindles, Rui Li, Xinyoung Tao, Xiaodong Li

Faculty Publications

Using a low temperature, organic-free hydrothermal technique, single-crystalline barium polyborate Ba3B6O9(OH)6 (BBOH) nanorods were synthesized. It was found that β-BaB2O4(BBO) nanospindles can be achieved by annealing the BBOH nanorods at a relatively low temperature of 810 °C. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize these nanomaterials. The formation mechanisms are discussed in conjunction with the crystallographic characteristics and surface energy of the BBOH nanorods and BBO nanospindles. UV-vis absorption spectra demonstrated that both BBOH nanorods and BBO nanospindles are …


Unveiling The Formation Mechanism Of Pseudo-Single-Crystal Aragonite Platelets In Nacre, Xiaodong Li, Zaiwang Huang Feb 2009

Unveiling The Formation Mechanism Of Pseudo-Single-Crystal Aragonite Platelets In Nacre, Xiaodong Li, Zaiwang Huang

Faculty Publications

We demonstrate direct evidence that a single-crystal-like aragonite platelet is essentially assembled with aragonite nanoparticles. The aragonite nanoparticles are readily oriented and assembled into pseudo-single-crystal aragonite platelets via screw dislocation and amorphous aggregation, which are two dominant mediating mechanisms between nanoparticles during biomineralization. These findings will advance our understanding of nacre’s biomineralization process and provide additional design guidelines for developing biomimetic materials.


Inhomogeneous Degradation Of Polymer Electrolyte Membrane In Pem Fuel Cells, Xinyu Huang, Wonseok Yoon Jan 2009

Inhomogeneous Degradation Of Polymer Electrolyte Membrane In Pem Fuel Cells, Xinyu Huang, Wonseok Yoon

Faculty Publications

Membrane durability is one of the technical barriers for the commercialization of polymer electrolyte membrane (PEM) fuel cells. Membrane embrittlement (a form of mechanical weakening) can lead to the frequently observed “sudden death” behavior of PEM fuel cells. It is the objective of this study to explore the fundamental mechanisms of the mechanical weakening of perfluorosulfonic acid (PFSA) based electrolyte membranes during the accelerated degradation test.


Piezoresistive Feedback Control Of A Mems Thermal Actuator, Robert K. Messenger, Quentin Theodore Aten, Timothy W. Mclain, Larry L. Howell Jan 2009

Piezoresistive Feedback Control Of A Mems Thermal Actuator, Robert K. Messenger, Quentin Theodore Aten, Timothy W. Mclain, Larry L. Howell

Faculty Publications

Feedback control of MEMS devices has the potential to significantly improve device performance and reliability. One of the main obstacles to its broader use is the small number of on-chip sensing options available to MEMS designers. A method of using integrated piezoresistive sensing is proposed and demonstrated as another option. Integrated piezoresistive sensing utilizes the inherent piezoresistive property of polycrystalline silicon from which many MEMS devices are fabricated. As compliant MEMS structure’s flex to perform their functions, their resistance changes. That resistance change can be used to transduce the structures’ deflection into an electrical signal. The piezoresistive microdisplacement transducer (PMT) …