Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Concentration Field Based Micropore Flow Rate Measurements, Matia P. Edwards, Samuel F. D. J. Gómez, Michael S. H. Boutilier Jan 2023

Concentration Field Based Micropore Flow Rate Measurements, Matia P. Edwards, Samuel F. D. J. Gómez, Michael S. H. Boutilier

Chemical and Biochemical Engineering Publications

Demand is growing for a larger catalogue of experimental techniques to measure flow rates through micro-/nanoscale systems for both fundamental research and device development. Flow emerging from a hole in a plane wall is a common system of interest in such work for its relevance to membrane separation. In this paper, we consider the possibility of measuring volume flow rates through small scale orifice plates from images of dye dispersions downstream. Based on approximate analytical solutions to the advection–diffusion equation, we show that, at low Reynolds numbers, the concentration in the nearly hemispherical plume that forms increases linearly with inverse …


Mass Advection–Diffusion In Creeping Flow Through An Orifice Plate: A Model For Nanoporous Atomically Thin Membranes, Harpreet Atwal, Anika Wong, Michael Boutilier Feb 2022

Mass Advection–Diffusion In Creeping Flow Through An Orifice Plate: A Model For Nanoporous Atomically Thin Membranes, Harpreet Atwal, Anika Wong, Michael Boutilier

Chemical and Biochemical Engineering Publications

Continuum transport equations are commonly applied to nanopores in atomically thin membranes for simple modeling. Although these equations do not apply for nanopores approaching the fluid or solute molecule size, they can be reasonably accurate for larger nanopores. Relatively large graphene nanopores have applications in small particle filtration and appear as unwanted defects in large-area membranes. Solute transport rates through these nanopores determine the rejection performance of the membrane. Atomically thin membranes commonly operate in a regime where advection and diffusion both contribute appreciably to transport. Solute mass transfer rates through larger nanopores have previously been modeled by adding continuum …