Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering

Material State Awareness For Composites Part Ii: Precursor Damage Analysis And Quantification Of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (Quic), Subir Patra, Sourav Banerjee Dec 2017

Material State Awareness For Composites Part Ii: Precursor Damage Analysis And Quantification Of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (Quic), Subir Patra, Sourav Banerjee

Faculty Publications

Material state awareness of composites using conventional Nondestructive Evaluation (NDE) method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC) is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally …


Material State Awareness For Composites Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (Cwi), Subir Patra, Sourav Banerjee Dec 2017

Material State Awareness For Composites Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (Cwi), Subir Patra, Sourav Banerjee

Faculty Publications

Detection of precursor damage followed by the quantification of the degraded material properties could lead to more accurate progressive failure models for composite materials. However, such information is not readily available. In composite materials, the precursor damages—for example matrix cracking, microcracks, voids, interlaminar pre-delamination crack joining matrix cracks, fiber micro-buckling, local fiber breakage, local debonding, etc.—are insensitive to the low-frequency ultrasonic guided-wave-based online nondestructive evaluation (NDE) or Structural Health Monitoring (SHM) (~100–~500 kHz) systems. Overcoming this barrier, in this article, an online ultrasonic technique is proposed using the coda part of the guided wave signal, which is often neglected. Although …


The Aspergillus Flavus Homeobox Gene, Hbx1, Is Required For Development And Aflatoxin Production, Jeffrey W. Cary, Pamela Y. Harris-Coward, Leslie Scharfenstein, Brian M. Mack, Perng-Kuang Chang, Qijian Wei, Matthew Lebar, Carol Carter-Wientjes, Rajtilak Majumdar, Chandrani Mitra, Sourav Banerjee, Anindya Chanda Oct 2017

The Aspergillus Flavus Homeobox Gene, Hbx1, Is Required For Development And Aflatoxin Production, Jeffrey W. Cary, Pamela Y. Harris-Coward, Leslie Scharfenstein, Brian M. Mack, Perng-Kuang Chang, Qijian Wei, Matthew Lebar, Carol Carter-Wientjes, Rajtilak Majumdar, Chandrani Mitra, Sourav Banerjee, Anindya Chanda

Faculty Publications

Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox (hbx) genes in the aflatoxin-producing ascomycete, Aspergillus flavus, and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1, in two morphologically different A. flavus strains, CA14 and AF70, resulted in …


Multiphysics Simulation Of Low-Amplitude Acoustic Wave Detection By Piezoelectric Wafer Active Sensors Validated By In-Situ Ae-Fatigue Experiment, Yeasin Bhuiyan, Victor Giurgiutiu Aug 2017

Multiphysics Simulation Of Low-Amplitude Acoustic Wave Detection By Piezoelectric Wafer Active Sensors Validated By In-Situ Ae-Fatigue Experiment, Yeasin Bhuiyan, Victor Giurgiutiu

Faculty Publications

Piezoelectric wafer active sensors (PWAS) are commonly used for detecting Lamb waves for structural health monitoring application. However, in most applications of active sensing, the signals are of high-amplitude and easy to detect. In this article, we have shown a new avenue of using the PWAS transducer for detecting the low-amplitude fatigue-crack related acoustic emission (AE) signals. Multiphysics finite element (FE) simulations were performed with two PWAS transducers bonded to the structure. Various configurations of the sensors were studied by using the simulations. One PWAS was placed near to the fatigue-crack and the other one was placed at a certain …


Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi Aug 2017

Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi

Faculty Publications

The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC) elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i) the repeatability and accuracy of sensors’ behavior …


Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin Aug 2017

Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin

Faculty Publications

Using static and dynamic density functional theory (DFT) methods with a cluster model of [(Li2CO3)8H]+, the mechanism and kinetics of proton transfer in lithium molten carbonate (MC) were investigated. The migration of proton prefers an inter-carbonate pathway with an energy barrier of 8.0 kcal/mol at the B3LYP/6-31 G(d,p) level, which is in good agreement with the value of 7.6 kcal/mol and 7.5 kcal/mol from experiment and FPMD simulation, respectively. At transition state (TS), a linkage of O–H–O involving O 2p and H 1 s orbitals is formed between two carbonate ions. The calculated trajectory of H indicates that proton has …


Fiber Optic Guided Wave Sensors For Structural Health Monitoring, Erik Frankforter Jan 2017

Fiber Optic Guided Wave Sensors For Structural Health Monitoring, Erik Frankforter

Theses and Dissertations

Risks and costs associated with aging infrastructure have been mounting, presenting a clear need for innovative damage monitoring solutions. One of the more powerful damage monitoring approaches involves using ultrasonic guided waves which propagate through a structure and carry damage-related information to permanently bonded sensors. Ultrasonic fiber-optic sensors are one of the most promising technologies for this application: they are immune to electromagnetic interference, present no ignition hazard, and transmit their data over tens of kilometers. However, before they can be widely employed, several limitations need to be overcome: poor sensitivity, unidirectional sensing, and loss of ultrasonic functionality due to …


Promotional Effect Of Molten Carbonates On Proton Conductivity And Oxygen Reduction Reaction – An Experimental And Computational Study, Xiaolei Xiong Jan 2017

Promotional Effect Of Molten Carbonates On Proton Conductivity And Oxygen Reduction Reaction – An Experimental And Computational Study, Xiaolei Xiong

Theses and Dissertations

Recent research of Solid oxide fuel cells (SOFCs) is aimed to lower the operating temperature to an intermediate temperature (IT) range of 500 to 700oC, while maintaining a proper performance. This Ph.D. research project investigates the promotional effects of alkaline carbonate eutectics on the proton conductivity of proton conducting electrolytes and cathodic ORR reactivity in SOFCs by both experimental and computational methods. The ionic conductivity of the MC-BZY composite above 500oC increases with the higher loading of MC. The sample exhibited nearly a factor of two higher conductivity in H2-containing atmosphere than in air. …


Numerical Analysis Of Phase Change, Heat Transfer And Fluid Flow Within Miniature Heat Pipes, Mehdi Famouri Jan 2017

Numerical Analysis Of Phase Change, Heat Transfer And Fluid Flow Within Miniature Heat Pipes, Mehdi Famouri

Theses and Dissertations

Heat pipes with broad applications in thermal systems have the ability to provide effective heat transport with minimal losses in over reasonable distances due to their passive nature. Their exceptional flexibility, simple fabrication, and easy control, not to mention, all without any external pumping power make them especially attractive in electronics cooling. Heat pipe development is motivated to overcome the need to presumably manage thermal dissipation in progressively compressed and higher-density microelectronic components, while preserving the components temperatures to specification.

Computation of flow and heat transfer in a heat pipe is complicated by the strong coupling among the velocity, pressure …


On The Microstructural Behavior Of Pure Magnesium Under Various Strain Rates, Peter Malchow Jan 2017

On The Microstructural Behavior Of Pure Magnesium Under Various Strain Rates, Peter Malchow

Theses and Dissertations

An investigation into the localized microstructural response of pure magnesium under both quasi-static and dynamic loading is presented in the form of several experimental works. The meso-scale events were examined using Digital Image Correlation techniques, which provide a methodology for mapping the in-situ full-field material strain behavior.

Firstly, an analysis of the grain boundary activity specifically under dynamic conditions at high magnification is discussed. An area of interest in the region of multiple grain boundaries and triple junctions is selected for characterizing the evolution of the strain and local rotation. This is followed by a study experimentally verifying the causes …


Computational Wave Field Modeling Using Sequential Mapping Of Poly-Crepitus Green’S Function In Anisotropic Media, Sajan Shrestha Jan 2017

Computational Wave Field Modeling Using Sequential Mapping Of Poly-Crepitus Green’S Function In Anisotropic Media, Sajan Shrestha

Theses and Dissertations

In this thesis, a meshless semi-analytical computational method is presented to compute the ultrasonic wave field in the generalized anisotropic material while understanding the physics of wave propagation in detail. To understand the wave-damage interaction in an anisotropic material, it is neither feasible nor cost-effective to perform multiple experiments in the laboratory. Hence, recently the computational nondestructive evaluation (CNDE) received much attention to performing the NDE experiments in a virtual environment. In this thesis, a fundamental framework is constructed to perform the CNDE experiment of a thick composite specimen in a Pulse-Echo (PE) mode. To achieve the target, the following …


Multi-Axis Multi-Material Fused Filament Fabrication With Continuous Fiber Reinforcement, Wout De Backer Jan 2017

Multi-Axis Multi-Material Fused Filament Fabrication With Continuous Fiber Reinforcement, Wout De Backer

Theses and Dissertations

Additive Manufacturing (AM) has become a well-recognized method of manufacturing and has steadily become more accessible as it allows designers to prototype ideas, products and structures unconceivable with subtractive manufacturing techniques for both consumer grade and industrial grade applications. Commonly used thermoplastics for 3D printing have properties that may not be sufficient to comply with the application’s certification requirements, or their performance is less than desirable for aerospace and other high performance applications. Additionally, additively manufactured parts have reduced mechanical properties in the build direction of the print, and are generally weaker than their equivalent injection-molded parts. Furthermore, Computer Aided …


Instability In Nonequilibrium And Nonthermal Plasma Discharges, Rajib Mahamud Jan 2017

Instability In Nonequilibrium And Nonthermal Plasma Discharges, Rajib Mahamud

Theses and Dissertations

Microplasma, or plasma in micron scale interelectrode separation, is an effective way to attain nonthermal plasma operation at atmospheric and higher pressure. However, the small size causes the effect of other operating parameters to be crucial in stable operation and make the microplasma discharge system to be susceptible to instabilities. The two major instabilities that are commonly observed are the instability in the negative differential resistance (NDR) region and the Striations or the ionization waves. The physics and reaction kinetics of NDR instability for high pressure system is not well understood. This study pursues both experimental characterization and development of …


Non-Destructive Evaluation Of Composites: Predictive Ultrasonic Guided-Waves Modeling, Non-Destructive Material Characterization, And The Application To Aerospace Structures, Darun Barazanchy Jan 2017

Non-Destructive Evaluation Of Composites: Predictive Ultrasonic Guided-Waves Modeling, Non-Destructive Material Characterization, And The Application To Aerospace Structures, Darun Barazanchy

Theses and Dissertations

To predict guided wave dispersion curves, it is common to use different solution approaches depending on the material type (isotropic or anisotropic) of the medium in which the wave propagates. The two different solution methods are defined in different domains, frequency-phase velocity domain for isotropic materials and wavenumber-phase velocity domain for anisotropic materials. This may lead to difficulties and unsatisfying results when predicting the dispersion curves for hybrid laminates which contain both isotropic and anisotropic materials. Therefore, a unified formulation defined in the wavenumber-phase velocity domain to accomodate both isotropic and anisotropic materials, as well as hybrid combinations, is desired. …


Progressive Failure Analysis Of Composite Materials Using The Puck Failure Criteria, Karan Kodagali Jan 2017

Progressive Failure Analysis Of Composite Materials Using The Puck Failure Criteria, Karan Kodagali

Theses and Dissertations

Fiber reinforced composites have been used in various engineering structures and applications especially in naval, automotive, aeronautical and sports industries. These composite materials generally exhibit brittle damage behavior. The anisotropy in the material and different kinds of failure mechanisms make it difficult to accurately characterize the behavior of composite materials. The present work aims to verify and apply the Puck Failure Criteria using the commercially available finite element package ABAQUS by writing a user-material subroutine in FORTRAN. The model is implemented with different post failure degradation schemes.

In the present work, the progressive failure on composite materials in analyzed using …


Enhanced Dropwise Condensation Via Wettability Contrast Mechanism, Mohammad Alwazzan Jan 2017

Enhanced Dropwise Condensation Via Wettability Contrast Mechanism, Mohammad Alwazzan

Theses and Dissertations

Condensation heat transfer performance can be improved by many methods including the most common used method, which is by increasing the droplet removal rate of the condensing surface. Commonly, this approached can be achieved by promoting a dropwise condensation mode in which super/hydrophobic coatings can be applied on the entire condenser surface to reduce the surface wettability degree. In this dissertation, two main approaches were adapted to enhance the condensation heat transfer performance of the condensing surface via wettability contrast mechanism. Three approaches of investigation were performed to better understand such dropwise condensation promoter methods.

In the first part, alternative …


Experimental And Numerical Investigation Of Pressure Drop In Silicon Carbide Fuel Rod For Application In Pressurized Water Reactors, Ahmed Musafi Abir Jan 2017

Experimental And Numerical Investigation Of Pressure Drop In Silicon Carbide Fuel Rod For Application In Pressurized Water Reactors, Ahmed Musafi Abir

Theses and Dissertations

Spacer grids are used in pressurized water reactors (PWRs) fuel assemblies which enhances heat transfer from fuel rods. However, there remain regions of low turbulence in between the spacer grids which contributes to lower heat transfer. To enhance turbulence in these regions surface roughness is applied on the fuel rod walls. Meyer et al [1] used empirical correlations to predict heat transfer and friction factor for artificially roughened fuel rod bundles at high performance light water reactors (LWRs). At present, several types of materials are being used for fuel rod cladding including zircaloy, uranium oxide, etc. But researchers are actively …


Nondestructive Evaluation And Health Monitoring Of Adhesively Bonded Composite Structures, William Walker Roth Jan 2017

Nondestructive Evaluation And Health Monitoring Of Adhesively Bonded Composite Structures, William Walker Roth

Theses and Dissertations

As the growth of fiber reinforced composite materials continues in many industries, structural designers will have to look to new methods of joining components. In order to take full advantage of composite materials, such as increased stiffness, decreased weight, tailored material properties and increased fatigue life, mechanical fasteners will need to be replaced by adhesive bonding or welding, when possible. Mechanical fasteners require the drilling of holes, which damages the laminate and becomes the source of further fatigue damage. Also, an increase in laminate thickness or inclusion of other features is required for the material to withstand the bearing stress …


A Comprehensive Evaluation Of Hybrid Wetting Configurations On Dropwise Condensation, Karim Khazal Egab Jan 2017

A Comprehensive Evaluation Of Hybrid Wetting Configurations On Dropwise Condensation, Karim Khazal Egab

Theses and Dissertations

The heat transfer during condensation on a surface depends on the pattern design of the surface, which can highly influence hydrophobic/hydrophilic wettability. In this study hybrid pattern designs were studied. The relationship between the droplet dynamic and the hybrid pattern design can alter the drainage rates, droplet departure frequencies, and the condensation heat transfer rates. Therefore, two series of hybrid patterned surfaces have been designed, developed, and tested during condensation of water vapor on horizontal copper tubes, and compared to complete dropwise and complete filmwise condensation samples. This is to investigate the design that provides the maximum improvement in the …