Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

University of Nevada, Las Vegas

2018

Block copolymers

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Electroactive Artificial Muscles Based On Functionally Antagonistic Core–Shell Polymer Electrolyte Derived From Ps-B-Pss Block Copolymer, Van Hiep Nguyen, Jaehwan Kim, Rassoul Tabassian, Moumita Kotal, Kiwoo Jun, Jung-Hwan Oh, Ji-Myeong Son, Muhammad Taha Manzoor, Kwang Jin Kim, Il-Kwon Oh Dec 2018

Electroactive Artificial Muscles Based On Functionally Antagonistic Core–Shell Polymer Electrolyte Derived From Ps-B-Pss Block Copolymer, Van Hiep Nguyen, Jaehwan Kim, Rassoul Tabassian, Moumita Kotal, Kiwoo Jun, Jung-Hwan Oh, Ji-Myeong Son, Muhammad Taha Manzoor, Kwang Jin Kim, Il-Kwon Oh

Mechanical Engineering Faculty Research

Electroactive ionic soft actuators, a type of artificial muscles containing a polymer electrolyte membrane sandwiched between two electrodes, have been intensively investigated owing to their potential applications to bioinspired soft robotics, wearable electronics, and active biomedical devices. However, the design and synthesis of an efficient polymer electrolyte suitable for ion migration have been major challenges in developing high-performance ionic soft actuators. Herein, a highly bendable ionic soft actuator based on an unprecedented block copolymer is reported, i.e., polystyrene-b-poly(1-ethyl-3-methylimidazolium-4-styrenesulfonate) (PS-b-PSS-EMIm), with a functionally antagonistic core–shell architecture that is specifically designed as an ionic exchangeable polymer electrolyte. The corresponding actuator shows exceptionally …