Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Bioresorbable Composite Stents For Enhanced Response Of Vascular Smooth Muscle Cells, Hozhabr Mozafari Dec 2019

Bioresorbable Composite Stents For Enhanced Response Of Vascular Smooth Muscle Cells, Hozhabr Mozafari

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Formation of arterial plaque and stenosis is one of the main cardiovascular disease risk factors. Stenting is a popular approach to increase the inner diameter of the artery and provide an acceptable lumen gain. This is achieved by applying internal pressure to the arterial wall. Despite the desirable outcomes of this procedure, there are complexities and challenges that are being discussed among scholars in this area. Restenosis is one of these complications, in which smooth muscles cell start proliferation and remodeling in response of induced mechanical stresses. Another important issue is the placement of the stent and possible migration due …


Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu Jan 2019

Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this study is to characterize the micromechanical properties of poly-L-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 μm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus of …