Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

University of Massachusetts Amherst

Aerodynamics

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Aeroelastic Simulation Of Wind Turbines Using Free Vortex Methods And Strategies For Accelerating The Computation, Shujian Liu Mar 2018

Aeroelastic Simulation Of Wind Turbines Using Free Vortex Methods And Strategies For Accelerating The Computation, Shujian Liu

Doctoral Dissertations

This dissertation integrated the free vortex method code Wake Induced Dynamics Simulator (WInDS), which was developed by Sebastian et al., into the open source and widely-used software FAST. A range of computational strategies including paral- lelization and Treecode algorithms are used to increase the computational efficiency of the software. Full aero-hydro-servo-elastic simulations with free vortex method are conducted, which focus on an in-depth study on the influence of the aeroelasticity of the wind turbine and platform motions on the unsteadiness of the aerodynamics, and the comparison of aeroelastic responses of two floating wind turbine concepts. This dissertation also applies long …


Modeling Dynamic Stall For A Free Vortex Wake Model Of A Floating Offshore Wind Turbine, Evan M. Gaertner Nov 2014

Modeling Dynamic Stall For A Free Vortex Wake Model Of A Floating Offshore Wind Turbine, Evan M. Gaertner

Masters Theses

Floating offshore wind turbines in deep waters offer significant advantages to onshore and near-shore wind turbines. However, due to the motion of floating platforms in response to wind and wave loading, the aerodynamics are substantially more complex. Traditional aerodynamic models and design codes do not adequately account for the floating platform dynamics to assess its effect on turbine loads and performance. Turbines must therefore be over designed due to loading uncertainty and are not fully optimized for their operating conditions. Previous research at the University of Massachusetts, Amherst developed the Wake Induced Dynamics Simulator, or WInDS, a free vortex wake …


Free Wake Potential Flow Vortex Wind Turbine Modeling: Advances In Parallel Processing And Integration Of Ground Effects, Nathaniel B. Develder Jan 2014

Free Wake Potential Flow Vortex Wind Turbine Modeling: Advances In Parallel Processing And Integration Of Ground Effects, Nathaniel B. Develder

Masters Theses 1911 - February 2014

Potential flow simulations are a great engineering type, middle-ground approach to modeling complex aerodynamic systems, but quickly become computationally unwieldy for large domains. An N-body problem with N-squared interactions to calculate, this free wake vortex model of a wind turbine is well suited to parallel computation. This thesis discusses general trends in wind turbine modeling, a potential flow model of the rotor of the NREL 5MW reference turbine, various forms of parallel computing, current GPU hardware, and the application of ground effects to the model. In the vicinity of 200,000 points, current GPU hardware was found to be nearly 17 …