Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 67

Full-Text Articles in Engineering

Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma Nov 2023

Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma

Doctoral Dissertations

Flexible or flexibly-mounted structures with bluff cross-sections in flow can shed vortices at frequencies that increase with increasing flow velocity. When this shedding frequency is equal to the structure's natural frequency, the structure can oscillate. This is called vortex-induced vibrations (VIV). VIV is present in multiple fluid-structure interaction (FSI) systems which can be found in industrial, medical, and engineering applications. These oscillations can be desirable or undesirable, so understanding the physics behind this phenomenon is important. This work seeks to investigate experimentally the VIV response in the inertial-viscoelastic regime where fluid inertia and elasticity influence the system. The subcritical Newtonian …


Micro And Nano R2r Embossing Of Extruded Polymers, Raymond S. Frenkel Nov 2023

Micro And Nano R2r Embossing Of Extruded Polymers, Raymond S. Frenkel

Doctoral Dissertations

This dissertation presents a process for directly imprinting or embossing extruded polymers as an advancement in roll-to-roll (R2R) embossing methods that avoids the problems of converting preformed films, increases throughput, and reduces costs. A proof-of-concept R2R apparatus was designed and constructed for directly embossing extruded polymer, and experimental results were evaluated. This laboratory scale R2R apparatus employed a thin metal ribbon belt mold with micro or nano scale features in a calendering setup, with a close coupled induction heating (IH) coil to preheat the ribbon mold above glass transition temperature (Tg) of the polymer, prior to contact with …


Additive Manufacturing Of High-Performance Nanolamellar Eutectic High-Entropy Alloys, Jie Ren Aug 2023

Additive Manufacturing Of High-Performance Nanolamellar Eutectic High-Entropy Alloys, Jie Ren

Doctoral Dissertations

Additive manufacturing, also called three-dimensional (3D) printing, is an emerging technology for printing net-shaped components layer by layer for applications in automotive, aerospace, biomedical and other industries. In addition to the vast design freedom offered by this approach, metal 3D printing via laser powder-bed fusion (L-PBF) involves large temperature gradients and rapid cooling and provides exciting opportunities for producing microstructures and mechanical properties beyond those achievable by conventional processing routes. Although these extreme printing conditions enable microstructural refinement to the nanoscale for achieving high strength. However, high-strength nanostructured alloys by laser additive manufacturing often suffer from limited ductility. Eutectic high-entropy …


Heat Transfer Characteristics Of Latent Heat Thermal Energy Storage, Kedar Prashant Shete Apr 2023

Heat Transfer Characteristics Of Latent Heat Thermal Energy Storage, Kedar Prashant Shete

Doctoral Dissertations

Latent heat thermal energy storage (LHTES) systems can be used to reduce electric demand when used in conjunction with Combined Heat and Power Plants or HVAC(Heating, Ventilation, Refrigeration and Air-Conditioning), as they can regulate the demand and supply of thermal energy. They can also be used to integrate renewable energy sources with the grid. A design procedure and performance modeling is required for designing and using thermal energy storage systems effectively. We propose hypotheses about the performance of an LHTES device with different operating conditions and material properties, for devices that are governed by different modes of heat transfer. We …


Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil Apr 2023

Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil

Doctoral Dissertations

Polymer networks are one of the most versatile and highly studied material class that revolutionized many aspects of life. Connecting the final network properties to the molecular parameters of its building blocks remains a major research thrust. Recent advances in network synthesis techniques allowed for accurate predictions of elastic modulus in model networks. Tew Group has developed highly efficient, thiol-norbornene networks with controllable mechanical properties. Chapter 2 focuses on modifying the gel fracture energy predicted by Lake-Thomas theory by accounting for loop defects. This study allowed for a priori estimates of gel fracture energy by combining theory, experiments, and simulations. …


Surface Engineering And Microfabrication Of Pdms-Based Devices For Women’S Health Applications, Jamar Hawkins Apr 2023

Surface Engineering And Microfabrication Of Pdms-Based Devices For Women’S Health Applications, Jamar Hawkins

Doctoral Dissertations

Poly(dimethylsiloxane) (PDMS) is a widely used polymer in biomedical and microfluidics research due to its optical transparency, castability, gas permeability, and relative biocompatibility. However, while the favorable intrinsic properties of the polymer are typically suitable for preventing experimental artifacts, the true advantage of these devices often comes from their customized patterning and design, which can be tailored to specific applications. Critical parameters in biomedical applications such as chemical concentration profiles, fluid streamlines, substrate topography, and mechanical stiffness can all be fine-tuned simply by selecting the appropriate dimensions and arrangement of PDMS microstructures. To address challenges in expanding the application of …


Thermal Transport Across 2d/3d Van Der Waals Interfaces, Cameron Foss Apr 2023

Thermal Transport Across 2d/3d Van Der Waals Interfaces, Cameron Foss

Doctoral Dissertations

Designing improved field-effect-transistors (FETs) that are mass-producible and meet the fabrication standards set by legacy silicon CMOS manufacturing is required for pushing the microelectronics industry into further enhanced technological generations. Historically, the downscaling of feature sizes in FETs has enabled improved performance, reduced power consumption, and increased packing density in microelectronics for several decades. However, many are claiming Moore's law no longer applies as the era of silicon CMOS scaling potentially nears its end with designs approaching fundamental atomic-scale limits -- that is, the few- to sub-nanometer range. Ultrathin two-dimensional (2D) materials present a new paradigm of materials science and …


The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall Jun 2022

The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall

Doctoral Dissertations

Fluid flow in the cardiovascular and lymphatic systems influences the phenotype of endothelial cells that line the interior to the vessel via mechanotransduction. Geometric features in a vessel such as curvature, bifurcation, and valves promote heterogeneous fluid flow profiles, inducing a heterogeneous endothelial phenotype within a vessel region. Certain flow conditions are associated with vascular dysfunction, and diseases such as atherosclerosis preferentially develop in areas of flow disturbance. Lymphatic vessels are highly analogous to blood vessels, although lymphatic flow characteristics and its effect on lymphatic endothelial cells (LECs) via mechanotransduction have been comparatively less examined. The most significant geometric features …


Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu Mar 2022

Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu

Doctoral Dissertations

Breast cancer most frequently metastasizes to the skeleton. Bone metastatic cancer is incurable and induces wide-spread bone osteolysis, resulting in significant patient morbidity and mortality. Mechanical stimuli in the skeleton are an important microenvironmental parameter that modulates tumor formation, osteolysis, and tumor cell-bone cell signaling, but which mechanical signals are the most beneficial and the corresponding molecular mechanisms are unknown. This work focused on bone matrix deformation and interstitial fluid flow based on their well-known roles in bone remodeling and in primary breast cancer. The goal of our research was to establish a platform that could define the relationship between …


Solidification Experiments And Magnetohydrodynamic Models In Electromagnetic Levitation, Gwendolyn Bracker Mar 2022

Solidification Experiments And Magnetohydrodynamic Models In Electromagnetic Levitation, Gwendolyn Bracker

Doctoral Dissertations

Electromagnetic levitation (EML) is a technique for containerless processing. The unique environment of containerless processing allows for the study of highly reactive melts at elevated temperatures. In containerless processing, the interface between a melt and its container is removed, reducing chemical contamination. In addition, levitation techniques reduce the available heterogeneous nucleation sites, providing greater access to the undercooled region for solidification studies. Levitation techniques provide the environment to study the fundamental behavior and thermophysical properties of liquid metals. During electromagnetic levitation experiments, magnetohydrodynamic flow is driven in the sample by the electromagnetic force field. This flow can have various effects …


Computational Study Of Internal Flow, Near Nozzle And External Spray Of A Gdi Injector Under Flash-Boiling Conditions, Chinmoy Krushna Mohapatra Mar 2022

Computational Study Of Internal Flow, Near Nozzle And External Spray Of A Gdi Injector Under Flash-Boiling Conditions, Chinmoy Krushna Mohapatra

Doctoral Dissertations

The early and late portions of transient fuel injection have proven to be a rich area
of research, especially since the end of injection can cause a disproportionate amount
of emissions in direct injection internal combustion engines. While simulating the
internal flow of fuel injectors, valve opening and closing events are the perennial
challenges. A typical adaptive-mesh CFD simulation is extremely computationally
expensive, as the small gap between the needle valve and the seat requires very
small cells to be resolved properly. Capturing complete closure usually involves a
topological change in the computational domain. Furthermore, Internal Combustion
Engines(ICE) operating with …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Modeling Portfolios Of Low Carbon Energy Generation Under Deep Uncertainty, Franklyn Kanyako Oct 2021

Modeling Portfolios Of Low Carbon Energy Generation Under Deep Uncertainty, Franklyn Kanyako

Doctoral Dissertations

In the 2015 Paris Agreement, nearly every country pledge through the Nationally Determined Contributions (NDCs) increased adoption of low carbon energy technologies in their energy system. However, allocating investments to different low carbon energy technologies under rising demand for energy and budget constraints, uncertain technical change in these technologies involves maneuvering significant uncertainties among experts, models, and decision-makers. We examine the interactions of low carbon energy sources (LCES) under the condition of deep uncertainty. Deep uncertainty directly impacts the understanding of the role of low carbon energy technologies in climate change mitigation and how much R&D investment should be allocated …


Simulating The Effects Of Floating Platforms, Tilted Rotors, And Breaking Waves For Offshore Wind Turbines, Hannah Johlas Oct 2021

Simulating The Effects Of Floating Platforms, Tilted Rotors, And Breaking Waves For Offshore Wind Turbines, Hannah Johlas

Doctoral Dissertations

Offshore wind energy is a rapidly expanding source of renewable energy worldwide, but many aspects of offshore wind turbine behavior are still poorly understood and are not accurately captured by low-cost engineering models used in the design process. To help improve these models, computational fluid dynamics (CFD) can provide valuable insight into the complex fluid flows that affect offshore wind turbine power generation and structural loads. This research uses CFD simulations to examine three main topics important to future offshore wind development: how breaking waves affect structural loads for fixed-bottom wind turbines; how platform motions affect power generation, wake characteristics, …


Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda Oct 2021

Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda

Doctoral Dissertations

This dissertation pertains to generating advanced materials using application-based processing techniques. First, billets consisting of PTFE sintering powders are evaluated using Thermomechancal Analysis. It was found that both shape change and volume change are associated with enthalpic and entropic recoil, respectively. These phenomena, due to melting and stored energy during the powder compaction process, were found to be molecular weight dependent. Additionally, kinetics of the recovery and sintering process were found to be slower in blended specimens than pure samples. Next, the creation of graft copolymers by selectively grafting a second polymer to the amorphous fraction of a semi-crystalline polymer …


Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra Oct 2021

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra

Doctoral Dissertations

Numerical modeling of advanced propulsion systems such as the Internal Combustion Engine (ICE) is of great interest to the community due to the magnitude of compute/algorithmic challenges. Fuel spray atomization, which determines the rate of fuel-air mixing, is a critical limiting process for the phenomena of combustion within ICEs. Fuel spray atomization has proven to be a formidable challenge for the state-of-the-art numerical models due to its highly transient, multi-scale, and multi-phase nature. Current models for primary atomization employ a high degree of empiricism in the form of model constants. This level of empiricism often reduces the art of predictive …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Material Property Heterogeneity In Dimensional Lumber And Its Relationship To Mass Timber Performance, Fiona O'Donnell Jun 2021

Material Property Heterogeneity In Dimensional Lumber And Its Relationship To Mass Timber Performance, Fiona O'Donnell

Doctoral Dissertations

According to the Environmental Protection Agency, buildings account for 38% of the United States' carbon dioxide emissions, providing architects and structural engineers a unique opportunity to mitigate a significant factor driving climate change by implementing innovative and sustainable technology in infrastructure design. Wood and mass timber products are becoming an increasingly popular alternative building material due to their economic and environmental benefits. The natural growth of wood leads to highly heterogeneous material properties. Defects such as checks, knots, and localized slope of grain contribute to some of this variation; however, wood properties vary significantly even in clear wood. Using mass …


Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee Jun 2021

Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee

Doctoral Dissertations

”Smaller is better” is the mantra that has driven semiconductor industry for the past 50 years. The on-going quest for faster electronic switching, higher transistor density, and better device performance, has been driven by a self-fulfilling prophecy popularly known as Moore’s law, according to which the number of transistors per unit area of a chip doubles itself approximately every two years. A modern smartphone has about 8 billion transistors, which is as large as current earth’s population. Although each transistor dissipates negligible power, but the collective power dissipation from all the transistors in an electronic gadget and inefficient heat removing …


Harnessing The Mechanics Of Thin-Walled Metallic Structures: From Plate-Lattice Materials To Cold-Formed Steel Shear Walls, Fani Derveni Jun 2021

Harnessing The Mechanics Of Thin-Walled Metallic Structures: From Plate-Lattice Materials To Cold-Formed Steel Shear Walls, Fani Derveni

Doctoral Dissertations

Thin-walled structures have received a lot of interest during the last years due to their light weight, cost efficiency, and ease in fabrication and transportation, along with their high strength and stiffness. This dissertation focuses on the mechanical performance of thin-walled metallic structures from cold-formed steel shear walls and connections (PART I) to plate-lattice architected materials (PART II) via computational, experimental, and probabilistic methods. Cold-formed steel (CFS) shear walls subjected to seismic loads is the focus of PART I of this dissertation. An innovative three-dimensional shell finite element model of oriented strand board (OSB) sheathed CFS shear walls is introduced …


A Generalized Method For Predictive Simulation-Based Lower Limb Prosthesis Design, Mark Price Apr 2021

A Generalized Method For Predictive Simulation-Based Lower Limb Prosthesis Design, Mark Price

Doctoral Dissertations

Lower limb prostheses are designed to replace the functions and form of the missing biological anatomy. These functions are hypothesized to improve user outcome measures which are negatively affected by receiving an amputation – such as metabolic cost of transport, preferred walking speed, and perceived discomfort during walking. However, the effect of these design functions on the targeted outcome measures is highly variable, suggesting that these relationships are not fully understood. Biomechanics simulation and modeling tools are increasingly capable of analyzing the effects of a design on the resulting user gait. In this work, prothesis-aided gait is optimized in simulation …


Design And Biomechanical Evaluation Of A Clutch-Based Energy Storage And Release Assistive Knee Brace, Ericber Jimenez Francisco Feb 2021

Design And Biomechanical Evaluation Of A Clutch-Based Energy Storage And Release Assistive Knee Brace, Ericber Jimenez Francisco

Doctoral Dissertations

Knee osteoarthritis (OA) is a serious degenerative disease affecting over 240 million people around the world. The most disabling symptoms are joint pain, joint stiffness, and reduction in joint functionality. Medial compartment knee OA is the most common case of unicompartmental knee OA, and pain and progression have been associated with tibiofemoral alignment in early to moderate knee OA patients, mainly due to its association with knee loading as measured by knee adduction moment (KAM) and tibiofemoral contact forces (KCF). Valgization knee braces have been developed to correct the malalignment at the tibiofemoral joint, but they have no direct effect …


Considerations For The Design Optimization Of Floating Offshore Wind Turbine Blades, Evan M. Gaertner Dec 2020

Considerations For The Design Optimization Of Floating Offshore Wind Turbine Blades, Evan M. Gaertner

Doctoral Dissertations

Floating offshore wind turbines are an immature technology with relatively high costs and risk associated with deployment. Of the few floating wind turbine prototypes and demonstration projects deployed in real metocean conditions, all have used standard turbines design for onshore or offshore fixed bottom conditions. This neglects the unique unsteady aerodynamics brought on by floating support structure motion. While the floating platform has been designed and optimized for a given rotor, the global system is suboptimal due to the rotor operating in conditions outside of which it was design for. If the potential offered by floating wind turbines is to …


Experimental Study Of Viscoelastic Fluid-Structure Interactions, Anita Anup Dey Dec 2020

Experimental Study Of Viscoelastic Fluid-Structure Interactions, Anita Anup Dey

Doctoral Dissertations

It is well known that when a flexible or flexibly-mounted structure is placed perpendicular to a Newtonian fluid flow, it can oscillate due to the shedding of vortices at high Reynolds numbers. Unlike Newtonian fluids, viscoelastic fluid flow can become unstable even at infinitesimal Reynolds numbers due to a purely elastic flow instability occurring at large Weissenberg numbers. This thesis focuses on exploring the mechanisms of viscoelastic fluid-structure interactions (VFSI) through experimental investigations on several different combinations of flexible and flexibly-mounted circular cylinders, micro and macro-scale cantilevered beams and viscoelastic fluids such as wormlike micelle solutions and polymer solutions. VFSI …


Robust And Sustainable Energy Pathways To Reach Mexico’S Climate Goals, Rodrigo Mercado Fernandez Sep 2020

Robust And Sustainable Energy Pathways To Reach Mexico’S Climate Goals, Rodrigo Mercado Fernandez

Doctoral Dissertations

As countries set climate change goals for adaptation and mitigation efforts, there are many questions regarding to how to reach these targets. These efforts will necessitate the transition of our electricity infrastructure from relying on conventional electricity generation technologies including natural gas, coal and oil, to clean energy generation with renewables. Through the three essays presented in this dissertation, we explore various pathways of development for the electricity system to reach long term climate change goals. We are interested in identifying: Is there a unique optimal development option or are there various? How do different mixes of electricity generation technologies …


Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen Nov 2019

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen

Doctoral Dissertations

Predictive simulation based on dynamic optimization using musculoskeletal models is a powerful approach for studying biomechanics of human gait. Predictive simulation can be used for a variety of applications from designing assistive devices to testing theories of motor controls. However, one of the challenges in formulating the predictive dynamic optimization problem is that the cost function, which represents the underlying goal of the walking task (e.g., minimal energy consumption) is generally unknown and is assumed a priori. While different studies used different cost functions, the qualities of the gaits with those cost functions were often not provided. Therefore, this dissertation …


Residual Stress Models For Large Eddy Simulation Of Stratified Turbulent Flows, Felipe Augusto Ventura De Bragança Alves Oct 2019

Residual Stress Models For Large Eddy Simulation Of Stratified Turbulent Flows, Felipe Augusto Ventura De Bragança Alves

Doctoral Dissertations

The residual stresses and scalar fluxes are required to close the momentum and scalar transport equations in simulations of turbulence that are not fully resolved in space. In stratified turbulence, the stress and fluxes are statistically anisotropic unless the smallest resolved length scale is smaller than the Ozmidov scale and the buoyancy Reynolds number is sufficiently high for there to exist a range of scales that is statistically isotropic. In this work, a tensorial basis set is derived analytically that potentially contains sufficient information about the anisotropic interaction between resolved and residual scales. The residual stress tensor is evaluated by …


Structural Control Of Offshore Wind Turbines Using Passive And Semi-Active Control, Semyung Park Oct 2019

Structural Control Of Offshore Wind Turbines Using Passive And Semi-Active Control, Semyung Park

Doctoral Dissertations

Offshore wind energy has the potential to generate substantial electricity production compared to onshore locations, due to the high-quality wind resource. Offshore wind turbines must endure severe offshore environmental conditions and be cost effective, in order to be sustainable. As a result, load mitigation becomes crucial in successfully enabling deployment of offshore wind turbines. A direct approach to reduce loads in offshore wind turbines is the application of structural control techniques. So far, the application of structural control techniques to offshore wind turbines has shown to be effective in reducing fatigue and extreme loads of turbine structures. However, the majority …


Three Essays On Data-Driven Optimization For Scheduling In Manufacturing And Healthcare, Ekin Koker Oct 2019

Three Essays On Data-Driven Optimization For Scheduling In Manufacturing And Healthcare, Ekin Koker

Doctoral Dissertations

This dissertation consists of three essays on data-driven optimization for scheduling in manufacturing and healthcare. In Chapter 1, we briefly introduce the optimization problems tackled in these essays. The first of these essays deals with machine scheduling problems. In Chapter 2, we compare the effectiveness of direct positional variables against relative positional variables computationally in a variety of machine scheduling problems and we present our results. The second essay deals with a scheduling problem in healthcare: the team primary care practice. In Chapter 3, we build upon the two-stage stochastic integer programming model introduced by Alvarez Oh (2015) to solve …


Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim Oct 2019

Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim

Doctoral Dissertations

Recent advances in the field of biomedical and life-sciences are increasingly demanding more life-like actuation with higher degrees of freedom in motion at small scales. Many researchers have developed various solutions to satisfy these emerging requirements. In many cases, new solutions are made possible with the development of novel polymeric actuators. Advances in polymeric actuation not only addressed problems concerning low degree of freedom in motion, large system size, and bio-incompatibility associated with conventional actuators, but also led to the discovery of novel applications, which were previously unattainable with conventional engineered systems. This dissertation focuses on developing novel actuation mechanisms …