Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

University of Kentucky

2019

Surface integrity

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Computationally Efficient, Multi-Domain Hybrid Modeling Of Surface Integrity In Machining And Related Thermomechanical Finishing Processes, Julius M. Schoop, David Adeniji, Ian S. Brown Jan 2019

Computationally Efficient, Multi-Domain Hybrid Modeling Of Surface Integrity In Machining And Related Thermomechanical Finishing Processes, Julius M. Schoop, David Adeniji, Ian S. Brown

Mechanical Engineering Faculty Publications

In order to enable more widespread implementation of sophisticated process modeling, a novel, rapidly deployable multi-physics hybrid model of surface integrity in finishing operations is proposed. Rather than modeling detailed chip formation mechanics, as is common in numerical models, the proposed models integrates existing analytical and semi-empirical models of the plastic, elastic, thermal and thermodynamic domains. Using this approach, highly complex surface integrity phenomena such as residual stresses, grain size, phase composition, microhardness profile, etc. can be accurately predicted in a manner of seconds. It is envisioned that this highly efficient modeling scheme will drive new innovations in surface engineering.


Analysis Of Surface Integrity In Machining Of Cfrp Under Different Cooling Conditions, Arjun Nagaraj Jan 2019

Analysis Of Surface Integrity In Machining Of Cfrp Under Different Cooling Conditions, Arjun Nagaraj

Theses and Dissertations--Mechanical Engineering

Carbon Fiber Reinforced Polymers (CFRP) are a class of advanced materials widely used in versatile applications including aerospace and automotive industries due to their exceptional physical and mechanical properties. Owing to the heterogenous nature of the composites, it is often a challenging task to machine them unlike metals. Drilling in particular, the most commonly used process for component assembly is critical especially in the aerospace sector which demands parts of highest quality and surface integrity.

Conventionally, all composites are machined under dry conditions. While there are drawbacks related to dry drilling, for example, poor surface roughness, there is a need …