Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Florida International University

Intumescent

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Mechanical Properties Of Permanent Foaming Fixatives For Deactivation & Decommissioning Activities, Tristan Maximilian Simoes-Ponce Mar 2020

Mechanical Properties Of Permanent Foaming Fixatives For Deactivation & Decommissioning Activities, Tristan Maximilian Simoes-Ponce

FIU Electronic Theses and Dissertations

The Department of Energy is investigating fixative technologies that encapsulate and/or immobilize residual contamination in voids during deactivation and decommissioning (D&D). These technologies must have adequate mechanical and adhesion properties to withstand seismic activity that may occur. One solution is the implementation of polyurethane foams used as permanent foaming fixatives (PFF), specifically intumescent foams that contain expandable graphite, making them fire resistant when exposed to extreme heat conditions.

Tensile, compression, seismic, and tensile adhesion testing was done on six commercial-off-the-self polyurethane foams to determine if the expandable graphite and other filler intumescent technologies improve its mechanical limits. It was found …


The Applications Of Intumescent Technologies In Support Of D&D Activities Across The Doe Complex, Joshua Alan Nunez Nov 2019

The Applications Of Intumescent Technologies In Support Of D&D Activities Across The Doe Complex, Joshua Alan Nunez

FIU Electronic Theses and Dissertations

Nuclear facilities in the process of Deactivation and Decommissioning (D&D) face several enormous challenges. Decommissioning is only part of the final shutdown process of a nuclear facility. The majority of the DOE facilities, like most industries, face fire hazards or extreme heat conditions. This study aims to research, test, and validate the operational performance of commercially available polyurethane expanding intumescent foams as potential fixatives for immobilizing residual contamination while preserving fire resiliency. Due to the novelty of this unique problem set and approach, existing international standards (ASTM/NIST/etc.) were reviewed for best-fit platforms with which to build testing protocols from. Once …