Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Brigham Young University

Tailsitter

Articles 1 - 8 of 8

Full-Text Articles in Engineering

A Comparison Of Aerodynamic Models For Optimizing The Takeoff And Transition Of A Bi-Wing Tailsitter, Ryan Anderson, Jacob Willis, Jacob Johnson, Andrew Ning, Randal Beard Jan 2021

A Comparison Of Aerodynamic Models For Optimizing The Takeoff And Transition Of A Bi-Wing Tailsitter, Ryan Anderson, Jacob Willis, Jacob Johnson, Andrew Ning, Randal Beard

Faculty Publications

Electric vertical takeoff and landing (eVTOL) aircraft take advantage of distributed electric propulsion as well as aerodynamic lifting surfaces to take off vertically and perform long-duration flights. Complex aerodynamic interactions and a hard-to-predict transition maneuver from hover to wing-borne flight are one challenge in their development. To address this, we compare three different interaction models of varying fidelity for optimizing the transition trajectory of a biplane tailsitter. The first model accounts for simplified rotor-on-wing interactions using momentum theory, while the other two account for wing-on-wing interactions using a vortex lattice method and rotor-on-wing aerodynamic interactions using blade element momentum theory. …


System Identification Of An Unmanned Tailsitter Aircraft, Nathan W. Edwards Aug 2014

System Identification Of An Unmanned Tailsitter Aircraft, Nathan W. Edwards

Theses and Dissertations

The motivation for this research is the need to improve performance of the autonomous flight of a tailsitter UAV. Tailsitter aircraft combine the hovering and vertical take-off and landing capability of a rotorcraft with the long endurance flight capability of a fixed-wing aircraft. The particular aircraft used in this research is the V-Bat, a tailsitter UAV with a conventional wing and the propeller and control surfaces located within a ducted-fan tail assembly. This research focuses on identifying the models and parameters of the V-Bat in hover and level flight as a basis for the design of the control systems for …


Quaternion Based Attitude Error For A Tailsitter In Hover Flight, Timothy Mclain, Matthew E. Argyle, Jason M. Beach, Randall W. Beard, Stephen Morris Jun 2014

Quaternion Based Attitude Error For A Tailsitter In Hover Flight, Timothy Mclain, Matthew E. Argyle, Jason M. Beach, Randall W. Beard, Stephen Morris

Faculty Publications

The tailsitter is a promising airframe that can take off and land on its tail and transition to level flight. While this ability provides vertical takeoff and landing capabilities with no additional moving parts, it introduces interesting control challenges. In this paper, we look at the attitude control system of a tailsitter in hover flight and show that the behaviour of the aircraft relies on the method used to compute the attitude error. We investigate three different methods of computing the attitude error, quaternion feedback, resolved tilt twist, and the resolved Euler angles, and compare them through simulated hover flight.


Tailsitter Heading Estimation Using A Magnetometer, Timothy Mclain, Jason M. Beach, Matthew E. Argyle, Randall W. Beard, Stephen Morris Jun 2014

Tailsitter Heading Estimation Using A Magnetometer, Timothy Mclain, Jason M. Beach, Matthew E. Argyle, Randall W. Beard, Stephen Morris

Faculty Publications

The tailsitter aircraft merges the endurance and speed of fixed-wing aircraft with the flexibility and VTOL abilities of rotorcraft. Typical control and estimation schemes make assumptions about the maximum attitude an aircraft will experience that are not valid for tailsitters. This paper discusses the limitations of a typical EKF magnetometer measurement update that uses Euler angles. It is shown how to use a second set of Euler angles to avoid gimbal lock. A method is given that bypasses the use of Euler angles altogether and directly uses the quaternion to determine heading error and update the attitude estimate. This method …


Tailsitter Attitude Control Using Resolved Tilt-Twist, Timothy Mclain, Jason M. Beach, Matthew E. Argyle, Randall W. Beard, Stephen Morris May 2014

Tailsitter Attitude Control Using Resolved Tilt-Twist, Timothy Mclain, Jason M. Beach, Matthew E. Argyle, Randall W. Beard, Stephen Morris

Faculty Publications

The tailsitter aircraft merges the endurance and speed of fixed-wing aircraft with the flexibility and VTOL abilities of rotorcraft. Because of the requirement to be functional at a full range of attitudes, quaternions are typically employed to calculate attitude error. Attitude control is then accomplished by using the vector component of the error quaternion to drive flight control surfaces. This paper demonstrates that this method of driving the flight control surfaces can be suboptimal for tailsitter type aircraft and can lead to undesired vehicle movement. An alternate method of calculating attitude error called resolved tilt-twist is improved and validated. The …


Development Of Tailsitter Hover Estimation And Control, Jason M. Beach Feb 2014

Development Of Tailsitter Hover Estimation And Control, Jason M. Beach

Theses and Dissertations

UAVs have become an essential tool in many market segments, particularly the military where critical intelligence can be gathered by them. A tailsitter aircraft is a platform whose purpose is to efficiently merge the range and endurance of fixed-wing aircraft with the VTOL capabilities of rotorcraft and is of significant value in applications where launch and recovery area is limited or the use of launch and recovery equipment is not desirable. Developing autopilot software for a tailsitter UAV is unique in that the aircraft must be autonomously controlled over a much wider range of attitudes than conventional UAVs. Assumptions made …


Adaptive Quaternion Control Of A Miniature Tailsitter Uav, Nathan B. Knoebel, Timothy W. Mclain Jun 2008

Adaptive Quaternion Control Of A Miniature Tailsitter Uav, Nathan B. Knoebel, Timothy W. Mclain

Faculty Publications

The miniature tailsitter is a unique aircraft with inherent advantages over typical unmanned aerial vehicles. With the capabilities of both hover and level flight, these small, portable systems can produce efficient maneuvers for enhanced surveillance and autonomy with little threat to surroundings and the system itself. Such vehicles create control challenges due to the two different flight regimes. These challenges are addressed with a computationally efficient adaptive quaternion control algorithm. A backstepping method for model cancellation and consistent tracking of reference model attitude dynamics is derived. This is used in conjunction with a regularized data-weighting recursive least-squares algorithm for the …


Adaptive Quaternion Control For A Miniature Tailsitter Uav, Nathan B. Knoebel Aug 2007

Adaptive Quaternion Control For A Miniature Tailsitter Uav, Nathan B. Knoebel

Theses and Dissertations

The miniature tailsitter is a unique aircraft with inherent advantages over typical unmanned aerial vehicles. With the capabilities of both hover and level flight, these small, portable systems can produce efficient maneuvers for enhanced surveillance and autonomy with little threat to surroundings and the system itself. Such vehicles are accompanied with control challenges due to the two different flight regimes. Problems with the conventional attitude representation arise in estimation and control as the system departs from level flight conditions. Furthermore, changing dynamics and limitations in modeling and sensing give rise to significant attitude control design challenges. Restrictions in computation also …