Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Brigham Young University

2015

Crease pattern

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Rigidly Foldable Origami Gadgets And Tessellations, Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, Larry L. Howell Sep 2015

Rigidly Foldable Origami Gadgets And Tessellations, Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, Larry L. Howell

Faculty Publications

Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented.


Deployable And Foldable Arrays Of Spatial Mechanisms, Thomas Evans Mar 2015

Deployable And Foldable Arrays Of Spatial Mechanisms, Thomas Evans

Theses and Dissertations

This work evaluates a specific origami device known as the kaleidocycle and the broad classof rigidly foldable origami. Both of these have potential for application in the design of deployableand foldable arrays of spatial mechanisms.Origami is considered a compliant mechanisms because it achieves its motion through thedeflection of paper creases. Compliant mechanisms generally do not allow for continuous rotation;however, the compliant kaleidocycle represents an exception to this generality. Along with theirability to rotate continuously, kaleidocycles may also be designed to exhibit multistable behaviorduring this rotation. These two characteristics make the kaleidocycle an interesting device withpotential for applications in engineering. This …