Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Brigham Young University

Series

Electric aircraft

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Review Of Computational Models For Large-Scale Mdao Of Urban Air Mobility Concepts, Darshan Sarojini, Marius L. Ruh, Jiayao Yan, Luca Scotzniovsky, Nicholas C. Orndorff, Ru Xiang, Han Zhao, Joshua J. Krokowski, Michael Warner, Sebastiaan Pc Van Schie, Ashley Cronk, Alexandre T. R. Guibert, Jeffrey T. Chambers, Lauren Wolfe, Rachel Doring, Robin Despins, Cibin Joseph, Ryan Anderson, Andrew Ning, Hyunjune Gill, Seongkyu Lee, Zeyu Cheng, Zhi Cao, Chunting Mi, Y Shirley Meng, Christopher Silva, Jiun-Shyan Chen, H. Alicia Kim, John T. Hwang Jan 2024

Review Of Computational Models For Large-Scale Mdao Of Urban Air Mobility Concepts, Darshan Sarojini, Marius L. Ruh, Jiayao Yan, Luca Scotzniovsky, Nicholas C. Orndorff, Ru Xiang, Han Zhao, Joshua J. Krokowski, Michael Warner, Sebastiaan Pc Van Schie, Ashley Cronk, Alexandre T. R. Guibert, Jeffrey T. Chambers, Lauren Wolfe, Rachel Doring, Robin Despins, Cibin Joseph, Ryan Anderson, Andrew Ning, Hyunjune Gill, Seongkyu Lee, Zeyu Cheng, Zhi Cao, Chunting Mi, Y Shirley Meng, Christopher Silva, Jiun-Shyan Chen, H. Alicia Kim, John T. Hwang

Faculty Publications

The advent of Urban Air Mobility (UAM) has necessitated a paradigm shift in aircraft design from traditional regression methods to physics-based analysis and the use of modern computational methods. This paper explores the intricacies of UAM aircraft design, acknowledging the limitations of historical empirical equations and advocating for the use of physics-based tools in the early stages of the design process. It underscores the importance of Multidisciplinary Design, Analysis, and Optimization (MDAO) as a means to integrate physics-based tools for conceptual design, facilitating decisions on configuration and sizing. The paper presents a comprehensive survey and review of computational models across …


Meshless Large Eddy Simulation Of Propeller-Wing Interactions With Reformulated Vortex Particle Method, Eduardo Alvarez, Andrew Ning Nov 2022

Meshless Large Eddy Simulation Of Propeller-Wing Interactions With Reformulated Vortex Particle Method, Eduardo Alvarez, Andrew Ning

Faculty Publications

The vortex particle method (VPM) has gained popularity in recent years due to a growing need to predict complex aerodynamic interactions during preliminary design of electric multirotor aircraft. However, VPM is known to be numerically unstable when vortical structures break down close to the turbulent regime. In recent work, the VPM has been reformulated as a large eddy simulation (LES) in a scheme that is both meshless and numerically stable, without increasing its computational cost. In this study, we build upon this meshless LES scheme to create a solver for interactional aerodynamics. Rotor blades are introduced through an actuator line …


Flowunsteady: An Interactional Aerodynamics Solver For Multirotor Aircraft And Wind Energy, Eduardo Alvarez, Judd Mehr, Andrew Ning Jun 2022

Flowunsteady: An Interactional Aerodynamics Solver For Multirotor Aircraft And Wind Energy, Eduardo Alvarez, Judd Mehr, Andrew Ning

Faculty Publications

The ability to accurately and rapidly assess unsteady interactional aerodynamics is a shortcoming and bottleneck in the design of various next-generation aerospace systems: from electric vertical takeoff and landing (eVTOL) aircraft to airborne wind energy (AWE) and wind farms. In this study, we present a meshless CFD framework based on the reformulated vortex particle method (rVPM) for the analysis of complex interactional aerodynamics. The rVPM is a large eddy simulation (LES) solving the Navier-Stokes equations in their vorticity form. It uses a meshless Lagrangian scheme, which not only avoids the hurdles of mesh generation, but it also conserves the vortical …


A Comparison Of Aerodynamic Models For Optimizing The Takeoff And Transition Of A Bi-Wing Tailsitter, Ryan Anderson, Jacob Willis, Jacob Johnson, Andrew Ning, Randal Beard Jan 2021

A Comparison Of Aerodynamic Models For Optimizing The Takeoff And Transition Of A Bi-Wing Tailsitter, Ryan Anderson, Jacob Willis, Jacob Johnson, Andrew Ning, Randal Beard

Faculty Publications

Electric vertical takeoff and landing (eVTOL) aircraft take advantage of distributed electric propulsion as well as aerodynamic lifting surfaces to take off vertically and perform long-duration flights. Complex aerodynamic interactions and a hard-to-predict transition maneuver from hover to wing-borne flight are one challenge in their development. To address this, we compare three different interaction models of varying fidelity for optimizing the transition trajectory of a biplane tailsitter. The first model accounts for simplified rotor-on-wing interactions using momentum theory, while the other two account for wing-on-wing interactions using a vortex lattice method and rotor-on-wing aerodynamic interactions using blade element momentum theory. …


Takeoff And Performance Tradeoffs Of Retrofit Distributed Electric Propulsion For Urban Transport, Kevin Moore, Andrew Ning Aug 2019

Takeoff And Performance Tradeoffs Of Retrofit Distributed Electric Propulsion For Urban Transport, Kevin Moore, Andrew Ning

Faculty Publications

While vertical takeoff and landing aircraft have shown promise for urban air transport, distributed electric propulsion on existing aircraft may offer immediately implementable alternatives. Distributed electric propulsion could potentially decrease takeoff distances enough to enable thousands of potential inter-city runways. This conceptual study explores the effects of a retrofit of open-bladed electric propulsion units. To model and explore the design space we use blade element momentum method, vortex lattice method, linear-beam finite element analysis, classical laminate theory, composite failure, empirically-based blade noise modeling, motor and motor-controller mass models, and gradient-based optimization. With liftoff time of seconds and the safe total …