Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Frequency Response Of The Leap Motion Controller And Its Suitability For Measuring Tremor, Clay J. Kincaid, Austin C. Vaterlaus, Nathan R. Stanford, Steven Knight Charles Nov 2018

Frequency Response Of The Leap Motion Controller And Its Suitability For Measuring Tremor, Clay J. Kincaid, Austin C. Vaterlaus, Nathan R. Stanford, Steven Knight Charles

Faculty Publications

Although tremor is one of the most common movement disorders, it is evaluated using relatively coarse clinical scales. We propose to measure tremor in clinical settings using the Leap Motion Controller (LMC), which is a markerless motion capture sensor that has a low cost, zero set-up time, and dynamic accuracy of 1.2mm. However, the frequency response of the LMC has not been characterized, so its ability to track oscillations such as tremor is unknown. To characterize the frequency response of the LMC, we measured the position of a mannequin hand simultaneously with the LMC and a high-resolution encoder while the …


Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren Nov 2018

Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren

Faculty Publications

This paper demonstrates the use of nonlinear dynamic optimization to calculate energy- optimal trajectories for a high-altitude, solar-powered Unmanned Aerial Vehicle (UAV). The objective is to maximize the total energy in the system while staying within a 3 km mission radius and meeting other system constraints. Solar energy capture is modeled using the vehicle orientation and solar position, and energy is stored both in batteries and in potential energy through elevation gain. Energy capture is maximized by optimally adjusting the angle of the aircraft surface relative to the sun. The UAV flight and energy system dynamics are optimized over a …


Cip2a Immunosensor Comprised Of Vertically-Aligned Carbon Nanotube Interdigitated Electrodes Towards Point-Of-Care Oral Cancer Screening, Shaowei Ding, Suprem R. Das, Benjamin J. Brownlee, Kshama Parate, Taylor Davis, Loreen R. Stromberg, Edward K.L. Chan, Joseph Katz, Brian D. Iverson, Jonathan C. Claussen Oct 2018

Cip2a Immunosensor Comprised Of Vertically-Aligned Carbon Nanotube Interdigitated Electrodes Towards Point-Of-Care Oral Cancer Screening, Shaowei Ding, Suprem R. Das, Benjamin J. Brownlee, Kshama Parate, Taylor Davis, Loreen R. Stromberg, Edward K.L. Chan, Joseph Katz, Brian D. Iverson, Jonathan C. Claussen

Faculty Publications

Vertically aligned carbon nanotube array (VANTA) coatings have recently garnered much attention due in part to their unique material properties including light absorption, chemical inertness, and electrical conductivity. Herein we report the first use of VANTAs grown via chemical vapor deposition in a 2D interdigitated electrode (IDE) footprint with a high height-to-width aspect ratio (3:1 or 75:25 µm). The VANTA-IDE is functionalized with an antibody (Ab) specific to the human cancerous inhibitor PP2A (CIP2A)—a alivary oncoprotein that is associated with a variety of malignancies such as oral, breast, and multiple myeloma cancers. The resultant immunosensor is capable of detecting CIP2A …


Deep Rc: Enabling Remote Control Through Deep Learning, Jaron Ellingson, Gary Ellingson, Tim Mclain Sep 2018

Deep Rc: Enabling Remote Control Through Deep Learning, Jaron Ellingson, Gary Ellingson, Tim Mclain

Student Works

Human remote-control (RC) pilots have the ability to perceive the position and orientation of an aircraft using only third-person-perspective visual sensing. While novice pilots often struggle when learning to control RC aircraft, they can sense the orientation of the aircraft with relative ease. In this paper, we hypothesize and demonstrate that deep learning methods can be used to mimic the human ability to perceive the orientation of an aircraft from monocular imagery.

This work uses a neural network to directly sense the aircraft attitude. The network is combined with more conventional image processing methods for visual tracking of the aircraft. …


Visual Servoing For Multirotor Precision Landing In Varying Light Conditions, Jesse Wynn, Tim Mclain Aug 2018

Visual Servoing For Multirotor Precision Landing In Varying Light Conditions, Jesse Wynn, Tim Mclain

Faculty Publications

The problem of performing a precision landing of an autonomous multirotor UAV in various lighting conditions is studied. A vision-based approach is proposed and consists of varying degree-of-freedom image-based visual servoing (VDOF-IBVS), and a specialized landing marker. The proposed approach is validated through extensive flight testing outdoors in both lighted and dark conditions, and is done using a standard off-the-shelf autopilot system.


Developable Compliant-Aided Rolling-Contact Mechanisms, Todd G. Nelson, Just L. Herder Aug 2018

Developable Compliant-Aided Rolling-Contact Mechanisms, Todd G. Nelson, Just L. Herder

Student Works

Rolling-contact mechanisms can provide low-friction motion with unique kinematic paths. We show that developable surfaces can be used as a design tool for rolling-contact mechanisms joined with compliant bands. These mechanisms can exhibit 3D motion paths, couple rotational and translational motions into a single degree of freedom, and can be designed to exhibit various tailored kinetic responses. We set forth developable surface parametrizations well suited to the creation of rolling contacts. We highlight how the geodesic and principal curvatures of the non-ruling principal curves of a developable surface are meaningful design quantities for rolling contacts. We provide kinematic and kinetic …


Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John H. Harb, Jonathan C. Claussen, Brian D. Iverson Aug 2018

Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John H. Harb, Jonathan C. Claussen, Brian D. Iverson

Faculty Publications

Free-standing, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 μm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating …


Total Hemispherical Apparent Radiative Properties Of The Infinite V-Groove With Diffuse Reflection, Rydge B. Mulford, Nathan S. Collins, Michael S. Farnsworth, Matthew R. Jones, Brian D. Iverson Aug 2018

Total Hemispherical Apparent Radiative Properties Of The Infinite V-Groove With Diffuse Reflection, Rydge B. Mulford, Nathan S. Collins, Michael S. Farnsworth, Matthew R. Jones, Brian D. Iverson

Faculty Publications

DYNAMIC control of radiative surface properties enables optimization of thermal management systems for spacecraft, radiative cooling systems, and other applications [1–3]. Various methods of altering the absorption or emission from a surface have been investigated [4–6]. Use of origami-inspired tessellated surfaces to control apparent radiative surface properties is a promising technology [7–9]. Realizing the full potential of tessellated surfaces to dynamically control apparent radiative surface properties requires convenient methods of calculating apparent properties as a function of tessellation geometry and intrinsic radiative surface properties. This Note focuses on the use of geometry to affect total, hemispherical properties of V grooves …


Experimental And Theoretical Investigation Of Mechanical Response Of Laser-Sintered Diamond Lattice Structures, Clayton Neff, Neil Hopkinson, Nathan B. Crane Aug 2018

Experimental And Theoretical Investigation Of Mechanical Response Of Laser-Sintered Diamond Lattice Structures, Clayton Neff, Neil Hopkinson, Nathan B. Crane

Faculty Publications

Typically additive manufacturing (AM) processes are limited to a single material per part while many products benefit from the integration of multiple materials with varied properties. To achieve the benefits of multiple materials, the geometric freedom of AM could be used to build internal structures that emulate a range of different material properties such as stiffness, Poisson’s ratio, and elastic limit using only one build material. This paper examines the range of properties that can be simulated using diamond lattice structures manufactured from Nylon 12 with a commercial laser sintering process. Diamond lattices were fabricated with a unit cell length …


Impact Of Extended Sintering Times On Mechanical Properties In Pa-12 Parts Produced By Powderbed Fusion Processes, Garrett Craft, Justin Nussbaum, Nathan B. Crane, J. P. Harmon Aug 2018

Impact Of Extended Sintering Times On Mechanical Properties In Pa-12 Parts Produced By Powderbed Fusion Processes, Garrett Craft, Justin Nussbaum, Nathan B. Crane, J. P. Harmon

Faculty Publications

Additive Manufacturing provides many advantages in reduced lead times and increased geometric freedom compared to traditional manufacturing methods, but material properties are often reduced. This paper considers powder bed fusion of polyamide 12 (PA12, Nylon 12) produced by three different processes: laser sintering (LS), multijet fusion (MJF)/high speed sintering (HSS), and large area projection sintering (LAPS). While all utilize similar PA12 materials, they are found to differ significantly in mechanical properties especially in elongation to break. The slower heating methods (MJF/HSS and LAPS) produce large elongation at break with the LAPS process showing 10x elongation and MJF/HSS exhibiting 2.5x the …


Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John N. Harb, Jonathan C. Claussen, Brian D. Iverson Aug 2018

Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John N. Harb, Jonathan C. Claussen, Brian D. Iverson

Faculty Publications

Freestanding, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 μm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating …


Total Hemispherical Apparent Radiative Properties Of The Infinite V-Groove With Diffuse Reflection, Rydge B. Mulford, Nathan S. Collins, Michael S. Farnsworth, Matthew R. Jones, Brian D. Iverson Jul 2018

Total Hemispherical Apparent Radiative Properties Of The Infinite V-Groove With Diffuse Reflection, Rydge B. Mulford, Nathan S. Collins, Michael S. Farnsworth, Matthew R. Jones, Brian D. Iverson

Faculty Publications

Dynamic control of radiative surface properties enables optimization of thermal management systems for spacecraft, radiative cooling systems and other applications [1-3]. Various methods of altering the absorption or emission from a surface have been investigated [4-6]. Use of origami-inspired, tessellated surfaces to control apparent radiative surface properties is a promising technology [7-9]. Realizing the full potential of tessellated surfaces to dynamically control apparent radiative surface properties requires convenient methods of calculating apparent properties as a function of tessellation geometry and intrinsic radiative surface properties. This paper focuses on the use of geometry to affect total, hemispherical properties of V-grooves comprised …


Evaluation Of Processing Variables In Polymer Projection Sintering, Justin Nussbaum, Nathan B. Crane Jun 2018

Evaluation Of Processing Variables In Polymer Projection Sintering, Justin Nussbaum, Nathan B. Crane

Faculty Publications

Purpose – Projection sintering, a system for selectively sintering large areas of polymer powder simultaneously with a high power projector is introduced. The paper evaluates the suitability of laser sintering process parameters for projection sintering as it uses substantially lower intensities, longer exposure times, and larger areas than conventional laser sintering (LS).

Design/methodology/approach – The tradeoffs in sintering outcomes are evaluated by creating single layer components with varied exposure times and optical intensities. Some of these components were cross-sectioned and evaluated for degree of densification while the single layer thickness and the maximum tensile force was measured for the rest. …


Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson Jun 2018

Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This work experimentally studies the effects of single wall heating on laminar flow in a high-aspect ratio superhydrophobic microchannel. When water that is saturated with air is used as the working liquid, the non-wetted cavities on the superhydrophobic surfaces act as nucleation sites and allow air to effervesce out of the water and onto the surface when heated. Previous works in the literature have only considered the opposite case where the water is undersaturated and absorbs air out the cavities for a microchannel setting. The microchannel considered in this work consists of a rib/cavity structured superhydrophobic surface and a glass …


Universal Airfoil Parametrization Using B-Splines, Dev Rajnarayan, Andrew Ning, Judd Mehr Jun 2018

Universal Airfoil Parametrization Using B-Splines, Dev Rajnarayan, Andrew Ning, Judd Mehr

Faculty Publications

In this paper, we apply well-known techniques for parametric curves to the definition and deformation of airfoil sections. While it has already been shown that many versions of Kulfan’s Class Shape Transformation (CST) are exactly equivalent to Bézier curves, we show here that all NACA 4-digit thickness distributions and the PARSEC parametrization of Sobiezcky are also higher-order Bézier curves. As with CST, Béziers and B-Splines provide direct control over aerodynamically meaningful features such as nose radius and boat-tail angle, but also provide more a intuitive parametrization of the rest of the airfoil surface. We show the efficacy of B-Spline-based parametrizations …


Integrated Free-Form Method For Aerostructural Optimization Of Wind Turbine Blades, Ryan Barrett, Andrew Ning Apr 2018

Integrated Free-Form Method For Aerostructural Optimization Of Wind Turbine Blades, Ryan Barrett, Andrew Ning

Faculty Publications

A typical approach to optimize wind turbine blades separates the airfoil shape design from the blade planform design. This approach is sequential, where the airfoils along the blade span are pre-selected or optimized and then held constant during the blade planform optimization. In contrast, integrated blade design optimizes the airfoils and the blade planform concurrently and thereby has the potential to reduce cost of energy (COE) more than sequential design. Nevertheless, sequential design is commonly performed because of the ease of precomputation, or the ability to compute the airfoil analyses prior to the blade optimization. This research compares two integrated …


Total Hemispherical Apparent Radiative Properties Of The Infinite V-Groove With Specular Reflection, Rydge B. Mulford, Nathan S. Collins, Michael S. Farnsworth, Matthew R. Jones, Brian D. Iverson Mar 2018

Total Hemispherical Apparent Radiative Properties Of The Infinite V-Groove With Specular Reflection, Rydge B. Mulford, Nathan S. Collins, Michael S. Farnsworth, Matthew R. Jones, Brian D. Iverson

Faculty Publications

Multiple reflections in a cavity geometry augment the emission and absorption of the cavity opening relative to a flat surface in a phenomenon known as the cavity effect. The extent of the cavity effect is quantified using apparent absorptivity and apparent emissivity. Analysis of complicated thermal systems is simplified through application of apparent radiative properities to cavity geometries. The apparent radiative properties of a specularly-reflecting, gray, isothermal V-groove have been derived analytically, but these results have not been validated experimentally or numerically. Additionally, the model for apparent absorptivity of an infinite V-groove subjected to partial illumination in the presence of …


Symmetric Equations For Evaluating Maximum Torsion Stress Of Rectangular Beams In Compliant Mechanisms, Guimin Chen, Larry L. Howell Feb 2018

Symmetric Equations For Evaluating Maximum Torsion Stress Of Rectangular Beams In Compliant Mechanisms, Guimin Chen, Larry L. Howell

Faculty Publications

There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions of the cross-section (i.e., the thickness and the width). After reviewing the available equations, two thickness-to-width ratio independent equations that are symmetric with respect to the two dimensions are obtained for evaluating the maximum torsion stress of rectangular cross-section beams. Based on the resulting equations, outside lamina emergent torsional joints are analyzed and some useful design insights are obtained. These equations, together with the previous work on symmetric …


A Method For Characterizing Essential Tremor From The Shoulder To The Wrist, Daniel W. Geiger, Dennis Eggett, Steven K. Charles Feb 2018

A Method For Characterizing Essential Tremor From The Shoulder To The Wrist, Daniel W. Geiger, Dennis Eggett, Steven K. Charles

Faculty Publications

Background

Despite the pervasive and devastating effect of Essential Tremor (ET), the distribution of ET throughout the upper limb is unknown. We developed a method for characterizing the distribution of ET and performed a preliminary characterization in a small number of subjects with ET.

Methods

Using orientation sensors and inverse kinematics, we measured tremor in each of the seven major degrees of freedom (DOF) from the shoulder to the wrist while ten patients with mild ET assumed 16 different postures. We described the tremor in each DOF in terms of power spectral density measures and investigated how tremor varied between …


Controlling Normal Stiffness In Droplet-Based Linear Bearings, Qi Ni, Nathan B. Crane Jan 2018

Controlling Normal Stiffness In Droplet-Based Linear Bearings, Qi Ni, Nathan B. Crane

Faculty Publications

While Capillary forces are negligible relative to gravity at the macroscale, they provide adequate force to effectively manipulate millimeter to micro meter objects. The fluidic actuation can be accomplished using droplets that also act as bearings. While rotary droplet bearings have been previously demonstrated, this paper considers the performance potential of discrete droplets acting as linear bearings. Specifically, it addresses the positioning accuracy of a droplet-based bearing consisting of a droplet between a moving plate and a stationary substrate with constrained wetting region under a normal load using both closed form analytical solutions and numerical simulations. The vertical force and …


Impact Of Vapor Polishing On Surface Quality And Mechanical Properties Of Extruded Abs, Clayton Neff, Matthew Trapuzzano, Nathan B. Crane Jan 2018

Impact Of Vapor Polishing On Surface Quality And Mechanical Properties Of Extruded Abs, Clayton Neff, Matthew Trapuzzano, Nathan B. Crane

Faculty Publications

Purpose — Additive manufacturing (AM) is readily capable of producing models and prototypes of complex geometry and is advancing in creating functional parts. However, AM processes typically underperform traditional manufacturing methods in mechanical properties, surface roughness, and hermeticity. Solvent vapor treatments (vapor polishing) are commonly used to improve surface quality in thermoplastic parts, but the results are poorly characterized.

Design/methodology/approach — This work quantifies the surface roughness change and also evaluates the effect on hermeticity and mechanical property impacts for “as-printed” and acetone vapor-polished ABS tensile specimens of 1, 2, and 4 mm thicknesses produced by material extrusion (FDM).

Findings …


Distributed Electric Propulsion Effects On Traditional Aircraft Through Multidisciplinary Optimization, Kevin Moore, Andrew Ning Jan 2018

Distributed Electric Propulsion Effects On Traditional Aircraft Through Multidisciplinary Optimization, Kevin Moore, Andrew Ning

Faculty Publications

Electric aircraft face a steep tradeoff between the demand for runway performance and range. While fuel based propulsion technologies typically increase in specific power with increasing size, electric propulsion is typically much more scalable. This system scalability enables alternative designs including distributed propulsion, optionally powered propulsion units, and vectored thrust, which can all contribute to better runway performance and range. In this paper, we explore how continuously powered distributed propulsion can reduce takeoff distance while still satisfying range constraints. We use a combination of a blade element momentum method, a vortex lattice method, experimental data, and nonlinear optimization techniques to …


Multidisciplinary Design Optimization Of Flexible Solar-Regenerative High-Altitude Long-Endurance Aircraft, Taylor Mcdonnell, Judd Mehr, Andrew Ning Jan 2018

Multidisciplinary Design Optimization Of Flexible Solar-Regenerative High-Altitude Long-Endurance Aircraft, Taylor Mcdonnell, Judd Mehr, Andrew Ning

Faculty Publications

Solar-Regenerative High-Altitude Long-Endurance (SR-HALE) aircraft are designed to sustain year-round flight at high altitudes indefinitely. No SR-HALE aircraft has yet accomplished this task due to the complex network of environmental, solar, structural, and aerodynamic trade-offs, among which aircraft flexibility plays a key role. A comprehensive SR-HALE aircraft multidisciplinary design optimization framework is developed in which the flexible aircraft analysis tool ASWING is incorporated in order to constrain nonlinear aeroelasticity. Energy, battery, ply thickness, material failure, local buckling, aerodynamic stall, longitudinal stability, and general stability (including flutter) constraints are applied in order to reasonably constrain the optimized SR-HALE aircraft design. An …


Benefits Of Two Turbine Rotor Diameters And Hub Heights In The Same Wind Farm, Andrew Pj Stanley, Andrew Ning, Katherine Dykes Jan 2018

Benefits Of Two Turbine Rotor Diameters And Hub Heights In The Same Wind Farm, Andrew Pj Stanley, Andrew Ning, Katherine Dykes

Faculty Publications

Significant turbine-wake interactions greatly reduce power output in a wind farm. If different turbine hub heights and rotor diameters are included in the same wind farm, the wake interference in the farm will be reduced, resulting in a lower cost of energy (COE) than a farm with identical turbines. In this paper, we present a method to model wind farm COE in farms with hub heights and rotor diameters that vary across the wind farm. We also demonstrate how to optimize these wind farms to minimize COE. The results show that COE can be greatly reduced in wind farms with …


Large-Scale Multidisciplinary Optimization Of An Electric Aircraft For On-Demand Mobility, John Hwang, Andrew Ning Jan 2018

Large-Scale Multidisciplinary Optimization Of An Electric Aircraft For On-Demand Mobility, John Hwang, Andrew Ning

Faculty Publications

Distributed electric propulsion is a key enabling technology for on-demand electric aircraft concepts. NASA’s X-57 Maxwell X-plane is a demonstrator for this technology, and it features a row of high-lift propellers distributed along the leading edge of its wing to enable better aerodynamic efficiency at cruise and improved ride quality in addition to less noise and emissions. This study applies adjoint- based multidisciplinary design optimization to this highly coupled design problem. The propulsion, aerodynamics, and structures are modeled using blade element momentum theory, the vortex lat- tice method, and finite element analysis, respectively, and the full mission profile is discretized …