Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Boise State University

Series

2009

BRC

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Influence Of Towing Force Magnitude On The Kinematics Of Supramaximal Sprinting, David A. Clark, Seth Kuhlman, Michelle B. Sabick, Ronald P. Pfeiffer, Nicole A. Knigge Jul 2009

Influence Of Towing Force Magnitude On The Kinematics Of Supramaximal Sprinting, David A. Clark, Seth Kuhlman, Michelle B. Sabick, Ronald P. Pfeiffer, Nicole A. Knigge

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The purpose of this study was to determine the influence of towing force magnitude on the kinematics of supramaximal sprinting. Ten high school and collegiate aged track and field athletes ran 60m maximal sprints under 5 different conditions: non-towed (NT), Tow A (2.0% body weight), Tow B (2.8%BW), Tow C (3.8%BW), and Tow D (4.7%BW). Three-dimensional kinematics of a 4-segment model of the right side of the body were collected starting at the 35m point of the trial. Significant differences were observed in stride length (SL) and horizontal velocity of the center of mass (VH) during Tow C and Tow …


The Relationships Between Muscle, External, Internal And Joint Mechanical Work During Normal Walking, Kotaro Sasaki, Richard R. Neptune, Steven A. Kautz Mar 2009

The Relationships Between Muscle, External, Internal And Joint Mechanical Work During Normal Walking, Kotaro Sasaki, Richard R. Neptune, Steven A. Kautz

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Muscle mechanical work is an important biomechanical quantity in human movement analyses and has been estimated using different quantities including external, internal and joint work. The goal of this study was to investigate the relationships between these traditionally used estimates of mechanical work in human walking and to assess whether they can be used as accurate estimates of musculotendon and/or muscle fiber work. A muscle-actuated forward dynamics walking simulation was generated to quantify each of the mechanical work measures. Total joint work (i.e. the time integral of absolute joint power over a full gait cycle) was found to underestimate total …