Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Composite materials

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 43

Full-Text Articles in Engineering

Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei May 2024

Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei

All Dissertations

In an era of intensified market competition, the demand for cost-effective, high-quality, high-performance, and reliable products continues to rise. Meeting this demand necessitates the mass production of premium products through the integration of cutting-edge technologies and advanced materials while ensuring their integrity and safety. In this context, Nondestructive Testing (NDT) techniques emerge as indispensable tools for guaranteeing the integrity, reliability, and safety of products across diverse industries.

Various NDT techniques, including ultrasonic testing, computed tomography, thermography, and acoustic emissions, have long served as cornerstones for inspecting materials and structures. Among these, ultrasonic testing stands out as the most prevalent method, …


Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu Jan 2024

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu

Engineering Technology Faculty Publications

This paper thoroughly examines the advancements and challenges in the field of additively manufactured Functionally Graded Materials (FGMs). It delves into conceptual approaches for FGM design, various manufacturing techniques, and the materials employed in their fabrication using additive manufacturing (AM) technologies. This paper explores the applications of FGMs in diverse fields, including structural engineering, automotive, biomedical engineering, soft robotics, electronics, 4D printing, and metamaterials. Critical issues and challenges associated with FGMs are meticulously analyzed, addressing concerns related to production and performance. Moreover, this paper forecasts future trends in FGM development, highlighting potential impacts on diverse industries. The concluding section summarizes …


Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian Jan 2022

Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian

Dissertations, Master's Theses and Master's Reports

Composite materials require a multi-scale approach to fully understand its behavior. At the micro level, material behavior analysis is conducted most often using numerical or analytical approaches. These models, however, require validation from experimental data to ensure material predictions are accurate. This study compares a semi-analytical micromechanical analysis tool, MAC/GMC, to experimental results of in-situ microscale transverse compression testing conducted at AFRL facilities. Effective properties, stress-strain curves, stress and strain fields, and damage predictions are compared with experimental outputs. Both generalized method of cells (GMC) and high-fidelity generalized method of cells (HFGMC) theories implemented within MAC/GMC show results that agree …


Impact Behavior Of Laminated Composites Built With Fique Fibers And Epoxy Resin: A Mechanical Analysis Using Impact And Flexural Behavior, Julian Rua, Mario F. Buchely, Sergio Neves Monteiro, Gloria I. Echeverri, Henry A. Colorado Sep 2021

Impact Behavior Of Laminated Composites Built With Fique Fibers And Epoxy Resin: A Mechanical Analysis Using Impact And Flexural Behavior, Julian Rua, Mario F. Buchely, Sergio Neves Monteiro, Gloria I. Echeverri, Henry A. Colorado

Materials Science and Engineering Faculty Research & Creative Works

This research analyzes the behavior of natural fiber reinforced laminated polymer composites (NFRPC) under mechanical solicitations. Samples were fabricated with epoxy resin matrix reinforced with a multilayer natural fique fiber in a bi-directional commercial fabric configuration. Different reinforcement contents without additives were prepared taking in the account the simplicity in processing, fabrication cost, and applications in which this material might be used with high performance standards. Charpy notched impact and 3-point bending test were carried out to evaluate the mechanical behavior and the work of fracture, which was improved significatively with the fibers, showing an increase from 5 to 30 …


Solvent Analysis Of Phenolic Resin Glass Fiber Reinforced Prepreg During Out-Time, Sixin Zhai, Crystal Ipong Jun 2021

Solvent Analysis Of Phenolic Resin Glass Fiber Reinforced Prepreg During Out-Time, Sixin Zhai, Crystal Ipong

Materials Engineering

Phenolic resin glass fiber reinforced prepregs are highly suitable for airplane interior components due to their high fire resistance, high temperature performance, and low-density characteristics. Safran Cabin seeks to improve their storage of the phenolic resin prepreg during their manufacturing process. The issues the company faces are the occasional delamination of prepreg laminas or the loss of tackiness rendering the lamina unfit for use. The area of investigation was determining the weight loss of volatiles during out-time. The term “out-time” consists of the time the prepreg experiences in transit, on the shop floor, and in short-term temperature-controlled storage. Simulated storage …


Properties And Performance Of The Basalt-Fiber Reinforced Texture Roof Tiles, Parinya Chakartnarodom, Wichit Prakaypan, Pitcharat Ineure, Nutthita Chuankrerkkul, Edward A. Laitila, Nuntaporn Kongkajun Dec 2020

Properties And Performance Of The Basalt-Fiber Reinforced Texture Roof Tiles, Parinya Chakartnarodom, Wichit Prakaypan, Pitcharat Ineure, Nutthita Chuankrerkkul, Edward A. Laitila, Nuntaporn Kongkajun

Michigan Tech Publications

The mechanical and the physical properties, and the performance of texture roof tiles reinforced with the basalt fibers were observed. The samples of the basalt-fiber reinforced texture roof tiles were produced on the industrial scale by using filter pressing method. After forming, the as-molded samples were air cured and characterized based on ASTM C1185 standard for their mechanical properties and physical properties. In addition, the roof-tile installation test was also performed. The results showed that the samples of the basalt-fiber reinforced texture roof tile (BFRT) could be produced on the industrial scale by using the common setting of the forming …


Modeling Hybrid Composites Using Tsai-Wu And Hashin Failure Criterion, Candice R. Roberts Mar 2020

Modeling Hybrid Composites Using Tsai-Wu And Hashin Failure Criterion, Candice R. Roberts

Theses and Dissertations

Hybrid composites require further study and testing for future use in various fields. This study focuses on simulating a Hybrid Composite using IM7-977-3 laminae with steel foils in Abaqus under bolt loading by using Hashin and Tsai-Wu failure criterion. Initial simulations contain only the IM7-977-3 composite with cohesive layers. Foil samples were then tested for accurate material properties from which the simulations were then updated to include steel foils. The two models show that Tsai-Wu failure criterion, while great for anisotropic material in tension, does not prove accuracy around the hole of the composite material which is in compression. Hashin …


Interlaminar Damage Detection In Composite Materials, Hariharan Rangarajan Jan 2019

Interlaminar Damage Detection In Composite Materials, Hariharan Rangarajan

Williams Honors College, Honors Research Projects

Using ceramic matrix composites (CMCs) for high-temperature applications in jet engines increases durability and reduces weight and cooling requirements resulting in improved efficiency and fuel savings. Understanding, detecting, and monitoring different types of damage is essential to achieve optimal performance of CMC components. The Direct Current Potential Drop (DCPD) method is a non-destructive technique of estimating damage in composite materials.

DCPD technique works by measuring nodal potential differences when current is flown through the material. Direct current spreading in different woven and laminate composites is modeled to follow a ladder resistor network in which the nodal voltages decrease exponentially as …


Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu Jan 2019

Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu

Williams Honors College, Honors Research Projects

This work investigates the use of two different polyols, xylitol (Xyl) and erythritol (Ery), in conjunction with boron nitride (BN) aerogels, for the purpose of creating thermally conductive composites. While the BN filler in Xyl composites achieved a high anisotropic thermal conductivity of up to 4.53 W/m-K at 18.2 weight percent filler loading, they do not exhibit good phase-change material qualities due to a low solidification enthalpy even at low cooling rates. Alternatively, the BN-Ery composites have shown promising results with a solidification enthalpy of 225.14 J/g and a melting enthalpy of 385.84 J/g at a heat rate of 5 …


Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh Nov 2018

Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh

Doctoral Dissertations

Metamaterials (MMs) are nanocomposite materials consisting of metal-dielectric resonators much smaller in size than the wavelength of the incident light. Common examples of metamaterials are based on split ring resonators (SRRs), parallel wires or strips and fishnet structures. These types of materials are designed and fabricated in order to provide unique optical responses to the incident electromagnetic radiation that are not available in naturally existing materials. The MMs can exhibit unusual properties such as strong magnetism at terahertz (THz) and optical frequencies. Additionally, negative index materials (NIMs) can provide negative index of refraction which can be used in many applications …


Synthesis And Behavior Characterization Of Multi-Scale Hierarchical Structured Composites, Jacob M. Mayfield Jan 2018

Synthesis And Behavior Characterization Of Multi-Scale Hierarchical Structured Composites, Jacob M. Mayfield

Electronic Theses and Dissertations

The purpose of the synthesis of a multi-scale hierarchical composite material was to create a material with a high specific strength, a low mass, and high strength material. To achieve this the material categorization of the Formlabs Tough V2 resin was conducted. The resin was used in the construction of a bio-mimicry diamond lattice structure. The structure was subjected to compression testing to characterize the material properties. The Tough V2 resin structure combined with cellulose created a multi-scaled material on Macro and Micro levels to show the bio-inspired design to increase the material properties in a favorable manor. The Tough …


Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski Aug 2017

Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Accidental mishandling of explosive materials leads to thousands of injuries in the US every year. Understanding the mechanisms behind the detonation process is crucial to prevent such accidents. In polymer-bonded explosives (PBX), high-frequency mechanical excitation generates thermal energy and can lead to an increase in temperature and vapor pressure, and potentially the initiation of the detonation process. However, the mechanisms behind this energy release, such as the effects of dynamic fracture and friction, are not well understood. Experimental data is difficult to collect due to the different time scales of reactions and vibrations, so research is aided by running simulations …


In Mold Flow Of Long Fibers In Compression Molding Process, Gleb Meirson Dec 2016

In Mold Flow Of Long Fibers In Compression Molding Process, Gleb Meirson

Electronic Thesis and Dissertation Repository

Long Fiber Thermoplastics (LFT) are promising new materials with high physical properties and low density. These high properties are obtained by embedding very long fibers (~100 mm) into a thermoplastic matrix. Such a high fiber length dictates the use of a compression molding process for manufacturing as the length of discontinuous fibers in injection molding is limited by pellet length.

LFT composites are of great interest for the automotive industry. These materials are already used in some interior and exterior car parts such as bumpers, seat structures, door module etc. This research is inspired by the desire to manufacture load …


Processing Of Al-12si-Tnm Composites By Selective Laser Melting And Evaluation Of Compressive And Wear Properties, Konda Prashanth, Sergio Scudino, Anil Chaubey, Lukas Löber, Pei Wang, Hooyar Attar, Frank Schimansky, Florian Pyczak, Jürgen Eckert Jan 2016

Processing Of Al-12si-Tnm Composites By Selective Laser Melting And Evaluation Of Compressive And Wear Properties, Konda Prashanth, Sergio Scudino, Anil Chaubey, Lukas Löber, Pei Wang, Hooyar Attar, Frank Schimansky, Florian Pyczak, Jürgen Eckert

Research outputs 2014 to 2021

Al-12Si (80 vol%)-Ti52.4Al42.2Nb4.4Mo0.9B0.06 (at.%) (TNM) composites were successfully produced by the selective laser melting (SLM). Detailed structural and microstructural analysis shows the formation of the Al6MoTi intermetallic phase due to the reaction of the TNM reinforcement with the Al-12Si matrix during SLM. Compression tests reveal that the composites exhibit significantly improved properties (∼140 and ∼160 MPa higher yield and ultimate compressive strengths, respectively) compared with the Al-12Si matrix. However, the samples break at ∼6% total strain under compression, thus showing a reduced plasticity of the composites. Sliding wear tests were carried out for both the Al-12Si matrix and the Al-12Si-TNM …


Fatigue Behavior Of Im7/Bmi 5250-4 Composite At Room And Elevated Temperatures, James T. Tipton Mar 2015

Fatigue Behavior Of Im7/Bmi 5250-4 Composite At Room And Elevated Temperatures, James T. Tipton

Theses and Dissertations

The tension-tension fatigue and tension-compression fatigue behaviors of the IM7/BMI 5250-4 composite were investigated. The tension-tension fatigue of the composite with 0/90 and ±45 fiber orientations was studied at 23, 170, and 190°C. The tension-compression fatigue of the composite with 0/90 fiber orientation was examined at 23°C. The tensile and compressive properties of the composite were also evaluated at room and elevated temperatures for both 0/90 and ±45 fiber orientations. Elevated temperature had little effect on the tensile properties of the 0/90 fiber orientation, but strongly influenced the ±45 tensile properties as well as the compressive properties of both fiber …


Bio-Inspired Helicoidal Composites: 3d Printing And Experiments, Michael E. Jones, Pablo Zavattieri, Nobphadon Suksangpanya Aug 2014

Bio-Inspired Helicoidal Composites: 3d Printing And Experiments, Michael E. Jones, Pablo Zavattieri, Nobphadon Suksangpanya

The Summer Undergraduate Research Fellowship (SURF) Symposium

Materials that are impact resistant enough for personal protection in sports, transport, and combat are not also lightweight, strong, tough, and impact tolerant. Nature can provide inspiration for novel materials that can meet these needs. The hierarchical composite of the stomatopod’s, or mantis shrimp’s, dactyl club has been shown to have high impact resistance and damage tolerance due to its helicoidal fiber reinforcement(1,2). Analyzing helicoidal composites of different pitch angles (angles between adjacent rows of fibers) under quasi-static, displacement-controlled loading has provided insights into the fracture mechanisms of the composite structure and how they affect the macroscopic properties of the …


Characterization Of Waviness In Wind Turbine Blades Using Air Coupled Ultrasonics, Sunil Kishore Chakrapani, Vinay Dayal, David K. Hsu, Daniel J. Barnard, Andrew Gross Aug 2014

Characterization Of Waviness In Wind Turbine Blades Using Air Coupled Ultrasonics, Sunil Kishore Chakrapani, Vinay Dayal, David K. Hsu, Daniel J. Barnard, Andrew Gross

Sunil Kishore Chakrapani

Waviness in glass fiber reinforced composite is of great interest in composite research, since it results in the loss of stiffness. Several NDE techniques have been used previously to detect waviness. This work is concerned with waves normal to the plies in a composite. Air‐coupled ultrasonics was used to detect waviness in thick composites used in the manufacturing of wind turbine blades. Composite samples with different wave aspect ratios were studied. Different wavy samples were characterized, and a three step process was developed to make sure the technique is field implementable. This gives us a better understanding of the effect …


Ultrasonic Testing Of Adhesive Bonds Of Thick Composites With Applications To Wind Turbine Blades, Sunil Kishore Chakrapani, Vinay Dayal, Ryan Krafka, Aaron Eldal Aug 2014

Ultrasonic Testing Of Adhesive Bonds Of Thick Composites With Applications To Wind Turbine Blades, Sunil Kishore Chakrapani, Vinay Dayal, Ryan Krafka, Aaron Eldal

Sunil Kishore Chakrapani

This paper discusses the use of pulse echo based ultrasonic testing for the inspection of adhesive bonds between very thick composite plates (thickness greater than 30 mm). Large wind turbine blades use very thick composite plates for its main structural members, and the inspection of adhesive bond-line is very vital. A wide gamut of samples was created by changing the thickness of plate and the adhesive. The influence of experimental parameters such as frequency on measurement is studied in this paper. Two different frequencies are chosen, and the measurement error bars are determined experimentally. T-Ray measurements were used to verify …


Inspection Of Helicopter Rotor Blades With The Help Of Guided Waves And "Turning Modes": Experimental And Finite Element Analysis, Daniel J. Barnard, Sunil Kishore Chakrapani, Vinay Dayal Aug 2014

Inspection Of Helicopter Rotor Blades With The Help Of Guided Waves And "Turning Modes": Experimental And Finite Element Analysis, Daniel J. Barnard, Sunil Kishore Chakrapani, Vinay Dayal

Sunil Kishore Chakrapani

Modern helicopter rotor blades constructed of composite materials offer significant inspection challenges, particularly at inner structures, where geometry and differing material properties and anisotropy make placement of the probing energy difficult. This paper presents an application of Lamb waves to these structures, where mode conversion occurs at internal geometric discontinuities. These additional modes were found to successfully propagate to the targeted regions inside the rotor and back out, allowing evaluation of the structure. A finite element model was developed to simulate wave propagation and mode conversion in the structure and aid in identifying the signals received in the laboratory experiment. …


Solution To Certain Problems In The Failure Of Composite Structures, Jonathan Goodsell Oct 2013

Solution To Certain Problems In The Failure Of Composite Structures, Jonathan Goodsell

Open Access Dissertations

The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is …


Effect Of Thermal Annealing And Carbon Implantation On The Functional Properties Of Nanocomposite Tisin Coatings On Steel, Mohammad Shoeb Ahmed Jan 2013

Effect Of Thermal Annealing And Carbon Implantation On The Functional Properties Of Nanocomposite Tisin Coatings On Steel, Mohammad Shoeb Ahmed

Theses: Doctorates and Masters

This PhD research contributes to the part of advanced materials technology. The machining industry currently faces tremendous pressures with the need for durable cutting tools suitable for eco-friendly high speed machining operations becoming acute. In this thesis innovative design and synthesis strategies are explored to tailor the properties of nanocomposite coatings. Advanced characterisation techniques are applied to identify the mechanisms that control the mechanical, tribological, and corrosion behaviours of these coatings. Cutting tools protected by these coatings are anticipated to exhibit a unique combination of superior toughness and greater resistance to wear and corrosion, providing significant economic and environmental benefits. …


Creep Behavior In Interlaminar Shear Of A Cvi Sic/Sic Composite At Elevated Temperatures In Air And Steam, Matthew T. Pope Mar 2012

Creep Behavior In Interlaminar Shear Of A Cvi Sic/Sic Composite At Elevated Temperatures In Air And Steam, Matthew T. Pope

Theses and Dissertations

This research investigated the interlaminar shear performance of a SiC/SiC ceramic matrix composite. The interlaminar shear performance was observed in compression of double notched specimens (DNS) at 1200°C in both laboratory air and in steam. Compression to failure tests determined the as-processed interlaminar shear strength and interlaminar shear creep tests were conducted with stresses ranging from -22 MPa to -16 MPa. Primary and secondary creep regimes were observed in all creep tests. The specimens tested in creep at -16 MPa in air achieved run-out, defined as 100 hours at creep stress. The residual strength decreased slightly after 100 h of …


Structural Health Monitoring Of M1114 High Mobility Multipurpose Wheeled Vehicle Armor System, Frank T. Sha Mar 2012

Structural Health Monitoring Of M1114 High Mobility Multipurpose Wheeled Vehicle Armor System, Frank T. Sha

Theses and Dissertations

The M1114 High Mobility Multipurpose Wheeled Vehicle (HMMWV) has been the workhorse vehicle of the U.S. Armed Forces in Afghanistan and Iraq. Donald Rumsfeld, Secretary of Defense, was faced with massive public criticism in 2004 for not equipping our military personnel in Afghanistan and Iraq with M1114s that had the proper ballistic armor. In May 2004, a $618M Senate Bill was passed to increase the production level of HMMWVs and improve their ballistic protection capabilities while minimizing additional weight. While the military is taking advantage of using composite armor on the HMMWV, it does not have a rigorous method to …


Nondestructive Evaluation Of Aircraft Composites Using Terahertz Time Domain Spectroscopy, Christopher D. Stoik Dec 2008

Nondestructive Evaluation Of Aircraft Composites Using Terahertz Time Domain Spectroscopy, Christopher D. Stoik

Theses and Dissertations

Terahertz (THz) time domain spectroscopy (TDS) was assessed as a nondestructive evaluation technique for aircraft composites. Material properties of glass fiber composite were measured using both transmission and reflection configuration. The interaction of THz with a glass fiber composite was then analyzed, including the effects of scattering, absorption, and the index of refraction, as well as effective medium approximations. THz TDS, in both transmission and reflection configuration, was used to study composite damage, including voids, delaminations, mechanical damage, and heat damage. Measurement of the material properties on samples with localized heat damage showed that burning did not change the refractive …


Prediction Of Effective Permittivity Of Diphasic Dielectrics Using An Equivalent Capacitance Model, Sandeep K. Patil, Marina Koledintseva, Robert W. Schwartz, Wayne Huebner Oct 2008

Prediction Of Effective Permittivity Of Diphasic Dielectrics Using An Equivalent Capacitance Model, Sandeep K. Patil, Marina Koledintseva, Robert W. Schwartz, Wayne Huebner

Electrical and Computer Engineering Faculty Research & Creative Works

An analytical model based on an equivalent capacitance circuit for expressing a static effective permittivity of a composite dielectric with complex-shaped inclusions is presented. The dielectric constant of 0-3 composites is investigated using this model. The geometry of the capacitor containing a composite dielectric is discretized into partial parallel-plate capacitor elements, and the effective permittivity of the composite is obtained from the equivalent capacitance of the structure. First, an individual cell diphasic dielectric (a high-permittivity spherical inclusion enclosed in a lower permittivity parallelepiped) is considered. The capacitance of this cell is modeled as a function of an inclusion radius/volume fraction. …


Analysis Of Multi-Layered Materials Under High Velocity Impact Using Cth, Jason K. Lee Mar 2008

Analysis Of Multi-Layered Materials Under High Velocity Impact Using Cth, Jason K. Lee

Theses and Dissertations

Multi-layer armor containing ceramic and metallic layers has become more common in the past two decades. Typically, ceramics have high compressive strength which combined with their low density make them highly desirable for armor applications. This research effort numerically simulates high velocity impact of cylindrical projectiles on multi-layer metallic and ceramic targets of finite thickness. The impact of the projectile occurs normal to the surface of the target. The projectiles used are made of either S7 tool steel or tungsten. The targets consist of either rolled homogeneous armor, 4340 steel and boron carbide ceramic or rolled homogeneous armor and boron …


Effects Of Environment On Creep Behavior Of Nextel 720/Alumina-Mullite Ceramic Composite At 1200°C, Christopher L. Genelin Mar 2008

Effects Of Environment On Creep Behavior Of Nextel 720/Alumina-Mullite Ceramic Composite At 1200°C, Christopher L. Genelin

Theses and Dissertations

The creep behavior of an oxide-oxide ceramic matrix composite (CMC) was investigated at 1200°C in laboratory air, in steam and in argon. The composite consisted of a porous alumina-mullite matrix reinforced with laminated, woven mullite/alumina (Nextel/720) fibers. The composite had no fiber coating and relied on its porous alumina/mullite matrix for flaw tolerance. Tensile stress-strain behavior was investigated and the tensile properties were measured at 1200°C in laboratory air. Tensile creep behavior of the CMC was examined for creep stress levels of 73, 91, 114 and 136 MPa. Creep run-out, set to 100 h, was achieved for stress levels ≤ …


Mode-I Toughness And Curing Pressure Characterisitc Of Symmetrical Lay-Up Of Plain Weave Woven Gfrp Composites, Mohd Aidy Faizal Johari, Kiam Beng Yeo, Mohd Noh Dalimin Jul 2007

Mode-I Toughness And Curing Pressure Characterisitc Of Symmetrical Lay-Up Of Plain Weave Woven Gfrp Composites, Mohd Aidy Faizal Johari, Kiam Beng Yeo, Mohd Noh Dalimin

mohd aidy faizal johari

This study describes an experimental study on the interlaminar Mode-I fracture toughness behavior of hand lay-up plain-weave woven GFRP laminate by using a fracture energy method of evaluation. Mode-I double cantilever beam (DCB) tests were performed on woven GFRP unsaturated polyester composite, E-Glass EWR 600 NISER, specimens. The specimen design and test procedure are performed with reference to the BS ISO 15024 and ASTM D5528. Various curing uniform pressure distribution has been investigated at 35.8kg/m2, 70.1kg/m2, 104kg/m2 and 138.2kg/m2, with respect to the toughness value. The lay-up laminates designed with symmetrical arrangement at the center-plane of the composite are also …


Modeling Fracture In Z-Pinned Composite Co-Cured Laminates Using Smeared Properties And Cohesive Elements In Dyna3d, Jason K. Freels Sep 2006

Modeling Fracture In Z-Pinned Composite Co-Cured Laminates Using Smeared Properties And Cohesive Elements In Dyna3d, Jason K. Freels

Theses and Dissertations

The purpose of the present research was three-fold: 1) gain a more sophisticated understanding of the response of co-cured composite joints with and without through-thickness reinforcement (TTR), 2) compare the behavior of specimens reinforced with various sizes and densities of reinforcement, and 3) use experimental data to verify the existing DYNA3D smeared property model. Double cantilever beam, end-notch flexure and T-section specimens reinforced with 0.011" diameter z-pins at 2% and 4% volume densities were tested to determine the mode I, mode II and mixed mode (I and II) behavior. Results were added to preliminary research in which tests were conducted …


Creep-Rupture And Fatigue Behaviors Of Notched Oxide/Oxide Ceramic Matrix Composite At Elevated Temperature, Mark A. Sullivan Mar 2006

Creep-Rupture And Fatigue Behaviors Of Notched Oxide/Oxide Ceramic Matrix Composite At Elevated Temperature, Mark A. Sullivan

Theses and Dissertations

Oxide/oxide composites are being considered for use in high temperature aerospace applications where their inherent resistance to oxidation provides for better long life properties at high temperature than most other ceramic matrix composites (CMCs). One promising oxide/oxide CMC is Nextel 720/A (N720/A) which uses an 8-harness satin weave (8HSW) of Nextel 720 fibers embedded in a porous alumina matrix. Possible aerospace applications for N720/A will likely require inserting holes into the material for mounting and cooling purposes. The notch characteristics must be understood to ensure designs using the material are sufficient for the desired application. This research effort examined the …