Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Process Development And Implementation For The Imaging Of Heat Treated A2 Steel For Consolidation Into An Atlas, Jessica Roberts May 2017

Process Development And Implementation For The Imaging Of Heat Treated A2 Steel For Consolidation Into An Atlas, Jessica Roberts

Senior Honors Projects, 2010-2019

Material processes, properties, and microstructure are interconnected, often visualized as the points of a triangle. Changing the process a material goes through will in turn change the properties and microstructure of that material. In materials research and education (specifically with metals), comparison between research or experiment results and scholarly-accepted results is important. When reading textbooks addressing different properties of metals and the process of metal treatment, images are often shown of the various microstructures associated with each property or process stage. The difficulty comes in trying to compare the stages or properties to one another; often different materials and processes …


Microstructural Evolution And Mechanical Properties Of Zn-Ti Alloys For Biodegradable Stent Applications, Zhiyong Yin Jan 2017

Microstructural Evolution And Mechanical Properties Of Zn-Ti Alloys For Biodegradable Stent Applications, Zhiyong Yin

Dissertations, Master's Theses and Master's Reports

Stents made of biodegradable metallic materials are increasingly gaining interest within the biomaterials field because of their superior mechanical properties and biodegradation rates as compared to polymeric materials. Zinc and its alloys have been developed and investigated as possible candidates for biodegradable stent applications in the last five years. This study intended to formulate and characterize a new series of Zn-Ti alloys, with titanium additions of less than 1-3 wt%, with the primary objective to develop and select an alloy that meets benchmark values of mechanical properties for biodegradable stents. A series of Zn-Ti alloys was formulated through vacuum induction …


Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi Jan 2017

Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi

Theses and Dissertations--Mechanical Engineering

Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications.

The SLM process parameters such as laser power, …


Modeling And Studying The Effect Of Texture And Elastic Anisotropy Of Copper Microstructure In Nanoscale Interconnects On Reliability In Integrated Circuits, Adarsh Basavalingappa Jan 2017

Modeling And Studying The Effect Of Texture And Elastic Anisotropy Of Copper Microstructure In Nanoscale Interconnects On Reliability In Integrated Circuits, Adarsh Basavalingappa

Legacy Theses & Dissertations (2009 - 2024)

Copper interconnects are typically polycrystalline and follow a lognormal grain size distribution. Polycrystalline copper interconnect microstructures with a lognormal grain size distribution were obtained with a Voronoi tessellation approach. The interconnect structures thus obtained were used to study grain growth mechanisms, grain boundary scattering, scattering dependent resistance of interconnects, stress evolution, vacancy migration, reliability life times, impact of orientation dependent anisotropy on various mechanisms, etc. In this work, the microstructures were used to study the impact of microstructure and elastic anisotropy of copper on thermal and electromigration induced failure.


Processing, Microstructure, And Mechanical Properties Of Zirconium Diboride-Molybdenum Disilicide Ceramics And Dual Composite Architectures, Ryan Joseph Grohsmeyer Jan 2017

Processing, Microstructure, And Mechanical Properties Of Zirconium Diboride-Molybdenum Disilicide Ceramics And Dual Composite Architectures, Ryan Joseph Grohsmeyer

Doctoral Dissertations

"This research had two objectives: characterization of processing-microstructure-mechanical property relationships of conventional ZrB2-MoSi2 ceramics at room temperature (RT) and 1500⁰C in air, and fabrication of ZrB2-MoSi2 dual composite architectures (DCAs) for use near 1500⁰C. Elastic moduli, fracture toughness, and flexure strength were measured at RT and 1500⁰C for 15 ZrB2-MoSi2 ceramics hot pressed using fine, medium, or coarse ZrB2 starting powder with 5-70 vol.% MoSi2, referred to as FX, MX, and CX respectively where X is the nominal MoSi2 content. MoSi2 decomposed during sintering, resulting in …