Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Numerical Simulations Of Twin Formation And Extension In Thin Face-Centred Cubic Metallic Films, Romuald Bejaud, Sandrine Brochard, Julien Durick Oct 2015

Numerical Simulations Of Twin Formation And Extension In Thin Face-Centred Cubic Metallic Films, Romuald Bejaud, Sandrine Brochard, Julien Durick

Nanomechanical Testing in Materials Research and Development V

The basic mechanisms of plasticity in face-centred cubic materials are now well known in bulk materials. However, several experimental studies have shown that at the nanoscale, some of its mechanisms can induce surprising mechanical properties when compared to bulk behaviour. The formation and extension of twins in metallic nanowire can, for example, generate super-plasticity [1] or the presence of growth nano-twins within a material can lead to strengthening effects [2]. Atomic simulations are particularly adapted for studying the plasticity mechanisms at play, since they allow their visualization at the atomic scale.

While many atomistic simulations studies have been focused on …


Fundamental Problems In Porous Materials: Experiments & Computer Simulation, Zhanping Xu Jul 2015

Fundamental Problems In Porous Materials: Experiments & Computer Simulation, Zhanping Xu

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Porous materials have attracted massive scientific and technological interest because of their extremely high surface-to-volume ratio, molecular tunability in construction, and surface-based applications. Through my PhD work, porous materials were engineered to meet the design in selective binding, self-healing, and energy damping. For example, crystalline MOFs with pore size spanning from a few angstroms to a couple of nanometers were chemically engineered to show 120 times more efficiency in binding of large molecules. In addition, we found building blocks released from those crystals can be further patched back through a healing process at ambient and low temperatures down to -56 …


Nanohub.Org: A Gateway To Undergraduate Simulation-Based Research In Materials Science And Related Fields, Tanya A. Faltens, Peter A. Bermel, Amanda Buckles, K Anna Douglas, Alejandro H. Strachan, Lynn K. Zentner, Gerhard Klimeck Jan 2015

Nanohub.Org: A Gateway To Undergraduate Simulation-Based Research In Materials Science And Related Fields, Tanya A. Faltens, Peter A. Bermel, Amanda Buckles, K Anna Douglas, Alejandro H. Strachan, Lynn K. Zentner, Gerhard Klimeck

Birck and NCN Publications

Our future engineers and scientists will likely be required to use advanced simulations to solve many of tomorrow's challenges in nanotechnology. To prepare students to meet this need, the Network for Computational Nanotechnology (NCN) provides simulation-focused research experiences for undergraduates at an early point in their educational path, to increase the likelihood that they will ultimately complete a doctoral program. The NCN summer research program currently serves over 20 undergraduate students per year who are recruited nationwide, and selected by NCN and the faculty for aptitude in their chosen field within STEM, as well as complementary skills such as coding …