Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Organic-Inorganic Halide Perovskite Nanocrystals And Solar Cells, Rui Guo Nov 2020

Organic-Inorganic Halide Perovskite Nanocrystals And Solar Cells, Rui Guo

FIU Electronic Theses and Dissertations

A great challenge facing humanity in the 21st century is finding inexhaustible and inexpensive energy sources to power the planet. Renewable energies are the best solutions because of their abundance, diversity, and pollution-free emission. Solar energy is the cleanest and most abundant renewable energy source available. In the continuing quest for efficient and low-cost solar cells, perovskite solar cells (PSCs) have emerged as a potential replacement for silicon solar cells. Since 2009, the record efficiencies of PSCs have been skyrocketing from 3.8 % to 25.2 % and are now approaching the theoretical limit. Along with the three-dimensional perovskites used …


Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal Jun 2020

Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal

FIU Electronic Theses and Dissertations

Lightweight metals, such as Aluminum, Magnesium and Titanium, are receiving widespread attention for manufacturing agile structures. However, the mechanical strength of these metals and their alloys fall short of structural steels, curtailing their applicability in engineering applications where superior load-bearing ability is required. There is a need to effectively augment the deformation- and failure-resistance of these metals without compromising their density advantage.

This dissertation explores the mechanical reinforcement of the aforementioned lightweight metal matrices by utilizing Boron Nitride Nanotube (BNNT), a 1D nanomaterial with extraordinary mechanical properties. The nanotubes are found to resist thermo-oxidative transformations up to ~750°C, establishing their …


Nanoelectronic Applications Of Magnetoelectric Nanostructures, Ping Wang Jun 2020

Nanoelectronic Applications Of Magnetoelectric Nanostructures, Ping Wang

FIU Electronic Theses and Dissertations

The greatly increased interest in magnetoelectric materials over the last decade is due to their potential to enable next-generation multifunctional nanostructures required for revolutionizing applications spanning from energy-efficient information processing to medicine. Magnetoelectric nanomaterials offer a unique way to use a voltage to control the electron spin and, reciprocally, to use remotely controlled magnetic fields to access local intrinsic electric fields. The magnetoelectric coefficient is the most critical indicator for the magnetoelectric coupling in these nanostructures. To realize the immense potential of these materials, it is necessary to maximize the coefficient. Therefore, the goal of this PhD thesis study was …


Novel Passive Rfid Temperature Sensors Using Liquid Crystal Elastomers, Yousuf Shafiq Mar 2020

Novel Passive Rfid Temperature Sensors Using Liquid Crystal Elastomers, Yousuf Shafiq

FIU Electronic Theses and Dissertations

When transporting perishable foods in the Cold Supply Chain (CSC), it is essential that they are maintained in a controlled temperature environment (typically from -1° to 10°C) to minimize spoilage. Fresh-food products, such as, meats, fruits, and vegetables, experience discoloration and loss of nutrients when exposed to high-temperatures. Also, medicines, such as, insulin and vaccines, can lose potency if they are not maintained at the appropriate temperatures. Consequently, the CSC is critical to the growth of global trade and to the worldwide availability of food and health supplies; especially, when considering that the retail food market consists mostly (approximately 65%) …